
Research Journal of Applied Sciences, Engineering and Technology 9(5): 346-352, 2015

DOI:10.19026/rjaset.9.1412

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: September 13, 2014 Accepted: October 11, 2014 Published: February 15, 2015

Corresponding Author: Suneeta H. Angadi, Department of CSE, RNSIT, Anna University, Chennai, Bangalore, Karnataka,

India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

346

Research Article

Design Parser For CDM Graph Geneartion in Graph Transformation
Based User Interface Modeling

1
Suneeta H. Angadi,

2
S. Mohan

1
Department of CSE, RNSIT, Anna University, Chennai, Bangalore, Karnataka, India

2
Department of ECE, CIET, Coimbatore, Tamilnadu, India

Abstract: In the direction of performance analysis form based web application development is reckoned in our
work. User interface development part of web application development is further taken into consideration.
Navigation aspect is emphasasised; to model navigation class diagram in Unified Modeling Language (UML) to
Conceptual Data Model (CDM) mapping is carried through. For achieving transformation, in this study design
document is parsed then CDM graph is drawn from parsed design data. Directed CDM graph generation using either
critical use case or algorithm is conversed.

Keywords: Class diagram, coceptual data model, performance analysis, user interface modeling

INTRODUCTION

Software development begins with information

from requirement and design specification;
performance the non functional property, its
verification is achieved by analysis of requirement and
design document. Functional software is delivred if it
addresses requirements and design specifications.
Software with performance property is delivered if
requirement and design specifications are accurately
mapped. Conceptual data model is the most abstract
form of data model. The development of CDM is a
design activity influenced by various kinds of
knowledge including both application domain
knowledge and data modelling representation and
process knowledge. Graph transformation is the process
of transforming one form of the graph into another fom
algorithmically; it is the rule based manipulation of
graphs (Ehrig et al., 1999). Performance engineering
field and graph transformation field have similar
notations like petri nets, process algebra; due to this
reason performance analysis can be performed with
graph transformation appoach. Article by Jaime et al.
(2000) proposes OO-Hmethod for software production
from conceptual models considering conceptual design
and conceptual modelling patterns. Navigation access
diagram to illustrate navigation model is introduced as
part of their work; authors state its required to have at
least one navigation access diagram for each user type.
Software performance engineering field’s critical use
case based software execution model might be used for
representating navigation in the form of graph. Martin

(2009) propose mapping of logical data model to user
interface model based on graph transformation for
modeling user interface elements. In the initial stage of
this work CDM graph generation need to be performed;
for CDM graph generation navigation aspect need to be
taken into account. Towards this goal, in this study an
attempt is made to automate design mapping in
software development before code is built, we have
mapped class diagram to CDM graph, in addition
development needs navigation details; navigation
support from the wok of Jaime et al. (2000) is referred.
Graph transfomation approach by Martin (2009) is
related to navigation concept present in work of Jaime
et al. (2000) as part of our work. Work by Mohan et al.
(2014) focusses performance analysis and for the
process of performance analysis; software performance
engineering principles, process and models are used.
Another approach is CDM graph generation from UML
class diagram as mentioned in work of Suneeta and
Mohan (2014) with the help of algorithm. In this study
an enhancement in the form of design document parsing
has been done. Form based web application
development is considered here, its user interface
development is modeled; for modeling CDM is used
and graph transfomation is used to simulate navigation
through the application.

LITARTURE REVIEW

Thomas et al. (1998) categorized web pages into
two groups as text based and GUI or metaphor based;
text based is functional and metaphor based is form

Res. J. App. Sci. Eng. Technol., 9(5): 346-352, 2015

347

based. Chun-Cheng (2010) used interviews with users
like type scale rating and principal component analysis
to collect and analyze data, author discuss design
criteria and main factors influencing web interface
design. Article by Kuo-Wei et al. (2011) converses
redesigned user interface for a case study by
considering users degree of cognitive and information
acceptance giving importance to human computer
interaction. Importance of user interface along with
difficulty in design and implementation of user
interface is communicated by Brad (1993). Authors set
up an extension of conceptual modeling approach
known as OO-H method that supports the conceptual
design of web applications (Jaime et al., 2000). As part
of work carried through authours Hallvard (2002)
propose a framework for classifying design
representations and task modelling language. Antovic´
et al. (2012) have analysed entities, their attributes
relationship and their influence on the user interface in
addition its indicated that software requirements are the
basis of developing good user interfcae. Work of Nora
and Andreas (2002) implements semi automatic
generation of web applications from design models.
Dorina (2009) contends about non functional properties
such as performance, scalability, reliability, security
and safety; Model driven approach for user interface
development has been implemented as part of this
work; descibed as given next, Process of design
document specification to CDM graph mapping begins
by reading the design in the form of UML class
diagram, then from this design class names and
associations are extracted. Design document in XMI
fom is parsed to fetch class names and associations; this
output is stored in a file, from this file content graph is
drawn. Steps of this process are shown in Fig. 1 in
addition steps are implemented in methodology section
of the paper, Contribution of this paper: Design
document parsing, drawing graph from design
document parsed data.

Background: Our work whose emphasis is

implementation of software performance engineering to

achieve non functional property performance, makes

use of software performanc engineering field

perfomance objectives, software performance

engineering process, software execution model along

with these even performance analysis activity is

considered which is an imporatnt component. Then

continues with modeling methodology which includes

user interface modeling since user interface modeling is

taken as first step of our work, software execution

model is incorporated to represent navigation aspect of

user interface. Graph transformation approach is used to

transform class diagram to CDM graph. Thus

navigation aspect is represented with the help of one of

the two ways mentioned below:

• Navigation determined by software excution model

framed by following critical use case

• Navigation determined with the help of graph

tranformation algorithm

Requirement and design analysis, based on

performance analysis will be step in achieveing

performance attributes like response time, scalability

and throughtput in the field of software performance

engineering; this design and requirement analysis are

part of proactive software performance engineering.

Requirement analysis to identify type of software

system can be performed by identifying keywords that

are part of software requirement specification; then

appropriate graph representation to model development

is associated. Advantage of modeling is rework can be

reduced; to streamline work in this direction we started

with software system development which is narrowed

to web application development and further cut down to

form based user interface development of web

application with the help of user interface modelling as

given below in Fig. 2.

Conceptual Parameters of our work are tabulated in

the Table 1 given next.

Fig. 1: Design to CDM mapping

Fig. 2: Performance analysis pursued in software development

Res. J. App. Sci. Eng. Technol., 9(5): 346-352, 2015

348

Table 1: Conceptual parameters of our work

Field Approach Process adopted Activity Modelling

Software Performance

Engineering (SPE)

Graph transformation SPE Process, graph

transformation based
process

Performance analysis Use interface modelling,

software execution
model

METHODOLOGY

Process of software design document parsing

shown in Fig. 1 begins by considering design document

as input; our process focuses on UML class diagram of

the design, from the design diagram its required to

extract class names and associations, from these CDM

graph need to be drawn. UML class diagram part of

design is drawn using AgroUML tool available from

http://argouml.software.informer.com/ (2009) then

design representation in XMI is parsed to extract node

names and edges, class names in the UML diagram are

node names and association end participant value

(determined by association end participant tag)

represent source and destination of edge. Algorithm 1 is

proposed and implemented for XMI document parsing

to map design onto CDM graph its steps are given

below, this generated CDM graph represents navigation

aspect of the application.

Steps to identify class name:

1. Open XMI file that contains class diagram details

in the form of tags

2. Identify tag ‘<’ (opening tag) followed by UML:

Class element

Then word name =

‘ClassName’ (this value must be extracted, start

with opening single quote and end at closing single

quote)

extract class id field value

Process continues till closing tag.

3. Repeat step 3 till EOF

4. Store these class id- name pair values in an output

file.

5. Display class names.

Algorithm to extract class names:

Steps to identify Association start and end

// Node denotes edge’s source and destination classes

1. Open XMI file that contains class diagram details

in the form of tags

2. Identify tag ‘< ‘ (opening tag) followed by

UML:Association element

Repeat till end of association element

then UML: AssociationEnd.participant

then UML: Class

Nodeid = xmi id reference

if(Nodetid = nameid.classid)

writefile(nameid.name)

writefile(‘ - - ‘) //write this character sequence for

only source

3. From the out put file generated in step 2 copy
graph definition and generate graph using
GraphViz tool available from
http://graphs.grevian.org/
Algorithm to extract associations

Result of the above algorithm implementation i.e.,

class names and associations are stored in text file, from
this text file CDM graph showing navigation aspect of
application is drawn. Further this undirected graph is
transformed to directed graph using either:

• Sequence diagram steps of critical use case as
present in work of Mohan et al. (2014)

• Using algorithm given below referred from the
wok of Suneeta and Mohan (2014)

Algorithm UML-CDM (G):
//MST is minimum spanning tree generated with
algorithm //represented as adj matrix a[][]
//Input:UML undirected graph a[][]
//output:directed CDM graph with minimum spanning
//tree(MST)

apply MST(a)
directed-graph(MST)

Algorithm directed-graph(MST)
//alg generates directed graph from MST
//Input: MST undirected graph t[][]
//Output:Directed Graph t[][]
1. For i = 1 to n do

For j = 1 to 2 do //since two column MST
Es[k] = t[i]->t[j]
Es[k+1] = t[j]->[i]
k++

2. read edge sequence numbers
for i = 1 to n do

if(sn==es[i])
i->j = 1
j->i = 0
es[i] = 0

for i = 1 to n
if (es[i] && sn!= es[i])
//remaining edges have to be inserted from j i
j->i = 1
i->j = 0
t[i][0] = j
t[i][1] = i

Algorithm UML-CDM //adopted for relationship
association: Above algorithm is suitable for class
diagrams with relationship associations, for class
diagrams with generalization and specialization
following algorithm is used:

Res. J. App. Sci. Eng. Technol., 9(5): 346-352, 2015

349

Fig. 3: Class diagram to CDM graph mapping (Steps)

Algorithm CDM_partial_directedGraph (adj[][])

//algorithm for directed edge insertion with partially

directed //graph as input

//Input: graph with partial edge directions (Boolean

value) from UML class diagram

//Output: Directed CDM graph

For i = 1 to n

For j = 1 to n

If(a[i][j]!=a[j][i])

If(a[i][j] && a[i][j].s==T)

Res. J. App. Sci. Eng. Technol., 9(5): 346-352, 2015

350

a[j][i] = 0
if(a[j][i] && a[j][i].s==T)
a[i][j] = 0

Algorithm CDM_partial_directedGraph // Adopted
for generalization specialization associations: Steps
followed in the process are shown in Fig. 3. Output
CDM graph is used for logical data model to user
interface modeling mapping which is present in work of
Martin (2009) we have referred this graph for
navigation aspect to develop user interface, using user
interface modeling.

RESULTS AND DISCUSSION

Methodology proposed here as shown in Fig. 1 has

been implemented and tested for case studies referred

from http://www.uml-diagrams.org/class-diagrams-

examples.html, it was observed that class diagram

mapping in the form of CDM graph helps in analysis of

the process from the navigation viewpoint,

implementation has been carried through in Java by

considering parser present in javax. Consider case study

of Student Attendance Entry software.

Student attendance entry: This software allows

faculty to enter attendance of students for different

subjects taught by faculties. Description of system in

UML class diagram form is given in Fig. 4 (along with

algorithm application) results obtained in terms of

number of directed edges and number of edges in input

graph is depicted in Fig. 5. Class names are shown in

screenshot given below.

XMI representation for this example along with

UML class diagram element’s mapping with XMI id’s

(marked in bold) is shown below (Fig. 6).

XMI id’s generated for classes student, faculty etc

and for association’s are shown in the Fig. 7, arrows

indicate element to which id is associated.

Fig. 4: Input and screenshot

Fig. 5: Number of edges in input UML class diagram and in directed CDM graph

0

2

4
6

8
10

12

14

16
18

20

22

24
26

28

30
32

34

36

S
tu

d
A

tt
en

d
T

im
e

ta
b
le

 d
is

k

F
in

 t
oo

l
F
ac

t

B
an

k

 B
ui

ld
er

L

ib
ra

ry

H
as

p
 L

ic
en

ce

S
em

in
ar

 E
n
ro

ll

 C
li
en

t
o

rd
er

 p
ro

ce
e

O
n
li
ne

Class diagram names

N
u
m

b
e
r

o
f

e
d

g
e
s

in
p

u
t

an
d
 o

u
tp

u
t

g
ra

p
h

No of input edge

No off output edge

12

3

12

4

14

9

32

18

16

9

20

8
7

20

9

7

14

7

20

8

Res. J. App. Sci. Eng. Technol., 9(5): 346-352, 2015

351

Fig. 6: Parsing to map Class Diagram components to Graph elements

Fig. 7: Class Diagram with XMI ID’s generated after designing with AgroUML

Fig. 8: Graph generation

Res. J. App. Sci. Eng. Technol., 9(5): 346-352, 2015

352

Fig. 9: Output

Definition to draw graph is written by referring

output text file which is result of design parsing; graph

generated is shown under results header as given below

in Fig. 8, to this graph UML-CDM algorithm is applied

to generate directed graph given in Fig. 9.

Figure 5 shows number of edges in input UML

class diagram and number of edges in directed CDM

graph.

Number of edges in input UML class diagram

shows associations present in scenario description;

number of edges in directed output graph shows

navigation aspect in user interface modelling. Number

of edges in output graph is derived first by parsing

design document then applying directed CDM graph

generation algorithm. Number of edges in the input

UML class diagram is more than number of output

edges in the resultant graph. Edges in output graph

focus on analyst’s expectation of navigation through the

application by following approach mentioned herein, in

absence of this kind of approach, developer has to

design forms addressing all the possible navigations.

CONCLUSION

Proactive performance engineering can be realized

by incorporating performance objectives or principles

in early development stages of software development.

Specifically in requirements gathering and design

phases, analysis performed in these stages will result in

performance valued software development. Modeling

approach with graph transformation can be effective by

relating these parameters, as part of our research work

we have performed design document parsing. This task

will ensure mapping of analyst’s specification to

implementation. Class diagram specification for user

interface development has been transformed to CDM

directed graph, directed CDM represents navigation

aspect; advantage of this approach is requirement

achievement with modeling by reducing rework. Future

work in this direction can be measuring amount of work

reduced and generation of all possible graphs showing

all navigation paths allowing the designer to choose

appropriate one, integrating all modules of our work in

the form of tool.

REFERENCES

Angadi, S.H. and S. Mohan, 2014. Graph

transformation based conceptual data model graph

generation for user interface development. Int. Rev.

Comput. Softw., 9(6).

Antović, I., S. Vlajić, M. Milić, D. Savić and V.

Stanojević, 2012. Model and software tool for

automatic generation of user interface based on use

case and data model. IET Softw., 6(6): 559-573.

Chun-Cheng, H., 2011. Factors affecting webpage’s

visual interface design and style. Proc. Comput.

Sci., 3(2011): 1315-1320.

Ehrig, H., G. Engles, H.J. Kreowski and G. Rozenberg,

1999. Handbook of Graph Grammars and

Computing by Graph Transformation. Vol. 2:

Application, Languages and Tools. World

Scientific, Singapore, pp: 105-180.

Hallvard, T., 2002. Model-based user interface design.

Ph.D. Thesis. Department of Mathematics and

Electrical Engineering, Faculty of Information

Technology, Norwegian University of Science and

Technology.

Jaime, G., C. Cristina and P. Oscar, 2000. Extending a

conceptual modelling approach to web application

design. In: Wangler, B. and L. Bergman (Eds.),

CAISE, 2000. LNCS 1789, Springer-Verlag,

Berlin, Heidelberg, pp: 79-93.

Koch, N. and A. Kraus, 2002. The expressive power of

UML-based web engineering. Proceeding of the

2nd International Workshop on Web-Oriented

Software Technology (IWWOST’02).

Martin, M., 2009. A contribution to user interface

modelling based on graph transformations

approach. Proceedings of the International

Workshop on Enterprises and Organizational

Modeling and Simulation (EOMAS, 2009).

Mohan, S., S.H. Angadi and G.T. Raju, 2014.

Performance analysis of graph transformation

based user interface modeling from conceptual data

model. Proceedings of the 2nd International

Conference on Applied Information and

Communications Technology (ICAICT’2014).

Myers, B.A., 1993. Why are human-computer

interfaces difficult to design and implement?

Technical Report, CMU-CS-93-183, Carnegie

Mellon University Pittsburgh, PA, USA.

Petriu, D.C., 2009. Software model-based performance

analysis. Proceeding of the MDD4DRES, pp: 1-19.

Powell, T.A., D.L. Jones and D.C. Cutts, 1998. Web

Site Engineering: Beyond Web Page Design.

Prentice-Hall Inc., NY.

Su, K.W., H.Y. Chang and K.C. Wang, 2011. A

practical approach for user interface design of a

G2B based official document exchange system in

Taiwan. Int. J. Innov. Comput. I., 7(11):

6423-6436.

