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Abstract: Aspect Oriented Programming (AOP) provides new modularization of software systems through 
encapsulation of crosscutting functionalities, providing a clear isolation and utilization thereof. The trade-offs are 
typically a consequence of technical contradictions in requirements. We employ a data structure called a lazy 
counting based splay tree to analyze the trade-off between the conflicting quality attributes. These contradictions 
must be conquered in order to achieve breakthrough. The performance of this data structure is verified after 
considering Cross Site Request Forgery (CSRF) which could be prevented by same-origin policy. The results are 
promising and show good potential for lazy counting-based splaying, which is capable of analyzing the overall 
performance of a splay tree compared with a lazy counting-based splay tree and providing interesting results about 
both. 
 
Keywords: Aspect-oriented programming, crosscutting functionalities, cross-site request forgery, lazy counting-
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INTRODUCTION 

 
Developing an application software system always 

demands consideration of both functional and non-
functional requirements. Modularizing the expansion of 
different requirements has important advantages in 
system evolution. Since such requirements typically 
originate from different stakeholders, they may cause 
different iterations of various parts of the software 
development process. Successful distribution of 
concerns can guide effortless development, maintenance 
and possible reuse, amongst others (Boström, 2004). 
State-of-the-art software techniques already support 
separation of concerns, for example, by means of 
method structuring, Object-Oriented Programming 
(OOP) and design patterns. On the other hand, these 
techniques are inadequate for separating the crosscutting 
functionality in broad-based functionality. A major 
cause of this limitation is the separation of concerns in 
an intuitive manner by grouping them into objects, 
though this technique is only efficient in separating 
concepts that map easily to objects and not for 
separating concerns. 

Aspect-Oriented Programming (AOP) provides 
techniques for managing crosscutting concerns into a 
single manageable component, which is referred to as an 
aspect. The concept of an aspect is at the heart of AOP 
and is used to solve many problems, such as 
representations of tangling and scattering. Tangling 
refers to how concerns intermingle with each other in a 

module, while scattering refers to how concerns are 
separated over many modules. 

However, the detection and order of crosscutting 
concerns and their consideration as an aspect, are 
challenging tasks. Developing secure software systems 
requires more than protecting objects from illegal 
manipulation; it also requires the prevention of illegal 
information flow among objects in a system (Izaki et al., 
2001).  

Another benefit of AOP is that because the core 
functionality of the system is executed separately, the 
developer no longer needs to refer to or use security 
mechanisms in the system. Implementing security could 
be left to a security expert and security policies can be 
independently implemented (Win et al., 2002). 

Incorporating information flow control during 
software development is tremendously challenging. 
First, the main issue with building real applications with 
information flow options is interfacing the new 
application with existing infrastructure that has not been 
designed with information flow in mind. Second, it is 
challenging to manage and assign security policies 
throughout the software development process. Third, the 
programmer is required to understand not only the 
algorithm, but also what the desired security policy is 
and how it can be formalized (Zdancewic, 2004).  

Several authors have discussed the benefits of using 

AOP to implement security concerns (Viega et al., 2001; 

De Win et al., 2001). Aspect-oriented software 

development is relevant to all the key aspects of 
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Fig. 1: Pointcut and its advices 

 

security, namely, verification, validation, access control, 

integrity checks, non-repudiation and synchronization, 

as well as for supporting the administration and 

exception handling required for effective security. 

Aspect-oriented software design is flexible enough to 

accommodate the implementation of additional security 

features after the functional system has been developed.  

 

Overview of aspect-oriented programming: AOP is 

the perfect complement to OOP in software engineering 

by providing more advanced modularization techniques 

to handle the scattering and tangling problems than 

existing models.  

In OOP the objects have properties and perform 

intended actions. However, the process of applying 

abstracted functionality is performed by the developer, 

which is more error prone and hence, less secure. On the 

contrary, in AOP this process is performed 

methodically, consistently and more precisely by the 

aspect weaver. In AOP the aspects have properties that 

can affect the entire performance or that of some of the 

components, such as the way a method is executed, 

synchronization, concurrency, resource allocation, 

exception handling, logging and so on.  

The main feature of this technology is its ability to 

specify both the behavior of one specific functionality as 

well as binding this functionality to other functionalities 

or  non-functionalities  such  as  its  relation  to  these.  

An aspect is a modular unit of a crosscutting 

implementation, which is provided in terms of pointcuts 

and advices, specifying what type of advice and when a 

pointcut  aspect  is  going  to  be  executed, as shown in 

Fig. 1. In the execution of a program, there will be join 

points where calls to an aspect can be injected. A 

pointcut is used to find a set of join points where an 

aspect can be injected. An advice declaration can be 

used to specify code that should run when the join points 

specified by the pointcut expression are reached. The 

advice code will be executed when a particular join 

point is reached, either before or after execution 

proceeds. A before/after advice on a method execution 

defines code that must be run before/after the particular 

method is executed, while an around advice defines 

code that is executed when the join point is reached and 

has control over whether the computation at the join 

point is allowed to be performed (Kiczales et al., 2001). 

The final application is created using both the 

functional code and its specific pointcut aspects. These 

two entities are combined to generate the byte code at 

compile time by invoking a special method called a 

weaver. 

 

LITERATURE REVIEW 

 

A software system that manipulates and stores 

credentials like passwords, identification documents, 

security clearances and tax information must prevent 

such information from being leaked during execution 

(Sabelfeld and Myers, 2003). Security mechanisms, 

such as firewalls or anti-virus software and also access 

control mechanisms are not adequate to protect against 

this type of information leakage. For example, 

determining whether communication breaches 

confidentiality is beyond the scope of any firewall 

mechanism. Similarly with encryption, there is no 

guarantee that once data is decrypted that its 

confidentiality will be maintained (Sabelfeld and Myers, 

2003). An access control policy determines the right to 

access objects containing information (Huang et al., 

2004). However, this type of control only relates to the 

release of data and does not control how data ‘flows’ 

during the execution of each statement in a program. 

Numerous instances of information “leakage” arise not 

from defective access control, but from the lack of 

policies about information flow (Wand et al., 2004). 

According to Mourad et al. (2008), AOP permits 

security hardening of applications by allowing the 

incorporation of supplementary security requirements to 

previously existing code that was designed to operate in 

a different security context. AOP also permits the 

integration of security into applications even when the 

source code is no longer available. For example, it may 

be required to apply tighter security requirements to 

legacy applications for which the source code may have 

been lost. In addition, with AOP, security can be 
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selectively applied to important areas of the application 

either explicitly or declaratively without having to 

change the code. The capability to declaratively 

applying security to specific areas of the code also 

provides the ability to easily apply multiple security 

features to a specific scheme.  

The Bell-La Padula (Bell, 2005) model is a 

mathematical model that utilizes the principles of 

mathematical theory to describe access methods in 

computer systems. This model uses four access modes, 

namely, read, append, execute and write. A set of rules 

is defined and proved to possess certain characteristics 

such as preserving simple security, discretional security 

and the *-property. The Bell-La Padula model has 

mostly been applied in military based systems where 

confidentiality of data is of the utmost priority. 

The Biba Stewart et al. (2005) model was 

developed after the Bell-La Padula model and followed 

similar principles of mathematical state machines to 

address the issue of data integrity. This model has 

mainly been used in commercial applications where the 

integrity of data is of greater concern than its 

confidentiality. 

De Win et al. (2001) defined three types of aspects, 

namely, identification, authentication and authorization, 

for access control policies in the aspect-oriented 

paradigm. The identification aspect is used to tag those 

entities that must be authenticated and is used as a 

container for identity information of the subject.  

The authentication aspect passes authentication 

information to the access control mechanism. The 

authorization aspect checks access based on the identity 

information received from the authentication aspect.  

Ramachandran et al. (2006) also addressed 

authentication and authorization within the aspect-

oriented paradigm by providing a more general 

approach. However, they do not address information 

flows.  

Kawauchi and Masuhara (2004) used an aspect to 

identify cross-site scripting. Their approach is 

predicated on validating the parameters by replacing 

special characters by quoted ones within input files 

submitted by users to web applications. They found that 

although sanitizing is a crosscutting concern, there is no 

possible way to define a pointcut that would be able to 

detect whether a string originated from an unauthorized 

source or contained unwanted information. Hence, they 

proposed a new pointcut called dflow that addresses the 

dataflow between join points as an extension to the 

AspectJ language. Kawauchi and Masuhara (2004) do 

not address security classifications or their dataflow 

definitions and only deal with direct information flow. 

Furthermore, they do not comment on transmission of 

information between objects in a method. Since no 

advancement has been made exclusively in this area and 

since AOP and OOP are complementary, it is important 

to investigate information flow control and security 

policies from this viewpoint first. 

Hermosillo et al. (2007) proposed a solution for 

web security against SQL injection and XSS attacks 

using AOP. Their work is a test of the reward for 

chaining security policies at runtime, with testing carried 

out against the first two insecurities, SQL injection and 

XSS. The solution presented provides a security aspect 

for a web application server. The authors have used 

aspects to validate the injected SQL in the web 

application server and also to validate XSS attacks in the 

user’s requests to the web application and from the web 

server to a database server. This allows the interception 

of all database accesses and the validation thereof before 

potentially dangerous information is stored (Lee et al., 

2012). A significant amount of work has been carried 

out in aspect-oriented security to make the process more 

systematic in terms of software design and development 

(De Win et al., 2002; De Win et al., 2001; Hermosillo  

et al., 2007).  

Simic and Walden (2013) designed a system to 

mitigate cross-site scripting and SQL injection 

vulnerabilities, the most common web application 

vulnerabilities, with no demand in expensive and 

potentially hazardous modifications to the source code 

of Web applications. At runtime, the application 

executes the protective aspect code to mitigate security 

issues when a block of vulnerable code is executed. 

The subsequent discussion highlights the relevance 

of aspect-oriented technology in terms of implementing 

some of the key components of security such as access 

control, authentication, persistence, transaction and 

monitoring, exception handling and synchronization in 

software systems. 

 

METHODOLOGY 

 

An aspect-based approach for representing 

information flow control: Plugging in non-functional 

aspects to functional aspects may result in several 

attacks, which may lead to a change in the composition 

rules, modifying the precedence of advices, unexpected 

behavior combinations, unhandled inputs and so on. 

These security vulnerabilities can be taken 

advantage of by using Cross-Site Request Forgery 

(CSRF or XSRF). A user may not be aware that such an 

attack has occurred and may only find out about the 

attack after the damage has been done since no remedy 

is applied. To avoid such attacks, the approach of using 

same-origin policies could be applied. 

To secure the functionality completely, one needs to 

perform internal dataflow analysis and ensure that un-

trusted input is sanitized before being used and that 

sensitive data is not released without authorization. 

Identifying illegal flows between objects requires an 

aspect based on the principle of a same-origin policy. 

Here pointcuts can be utilized to identify flows between 

objects.  This   aspect   observes  objects  and  intercepts 
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Table 1: Injection of risky aspects 

Aspect CSRFRestriction { 

pointcut aspect injection (Aspect aspect) 

execution (*Aspect.* (..)) && this (aspect) 

before (Aspect aspect): aspectInjection (aspect) { 

//reference to the same origin this aspect is deployed in  

Sop sop = …; 

//this aspect does not belong to same origin policy 

If (! sop. belongs (aspect)) { 

throw new AccessControlException (); 

} 

}} 

 

messages flowing between them. The aspect’s advice 

would then determine upon examining the given 

message and classification of the sender and recipient, 

whether to allow the information flow. A same-origin 

policy helps to detect these and many other 

vulnerabilities by identifying data sources and sinks and 

how secure they are. Generally, all sources outside the 

component should be considered untrustworthy (e.g., 

system calls, third party plug-ins and routines that can 

copy data from the user space or network). 

The same-origin policy approach is utilized to apply 

the policy model at runtime, thereby allowing aspects 

originating from the same location, such as a 

combination of scheme, hostname and port number. The 

weaver supplements woven software with logic to 

maintain the permission state of the software. As such, 

only the weaver is altered and no modification to the 

virtual machine or language semantics is needed. 

Table 1 illustrates how the mechanism of injection 

can be used to disable a CSRF malicious aspect by 

intrinsically calling security features. 

This policy protects against eventualities in which 

un-trusted aspects, which may originate from third party 

libraries (especially from CSRF), are incorrectly woven 

into  the  rest  of  the  application  code,  as  shown  in  

Fig. 2. This policy has the means to detect and prevent a 

number of remote-user exploits, such as cross-site 

scripting, HTML injection, SQL injection and command 

injection (Simic and Walden, 2013). Severe security 

flaws  would  exist  if  there  were  no  restrictions  

isolating the aspect from different origins and all the 

pointcuts of aspects between them were allowed. While 

it may be considered safe to perform the pointcut of 

aspects between different origins through hyperlinks, 

automated injection of aspects could potentially be 

dangerous. 

 

Lazy counting-based splay tree: By injecting 

crosscutting functionalities into core functionalities, 

cross site request forgery could results in many attacks. 

CSRF attack can be used to modify the precedence of 

advices and unexpected combinations, fire unauthorized 

aspects, prevent the aspects from advising a joining 

point, or conduct fraudulent financial transactions. To 

organize injected aspects from the same origin, a 

counting-based splay tree is used. While the authorized 

aspect could be compromised after the same origin 

policy is verified before injection into the core 

functionality, when a new pointcut aspect enters the 

system the following actions are needed: 

 

• The CSRF is checked using the same origin policy 

• Legitimacy of the code is verified 

 

If the pointcut is already available in the counting-

based splay tree, the counters are updated accordingly 

 

 
 

Fig. 2: Approach using a same-origin policy  
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Fig. 3: Splaying steps: zig and zig-zag 

 

and the pointcut aspect is injected into the core 

functionality. The most frequently accessed aspects are 

moved closer to the root to minimize search time. If it is 

a newly arrived pointcut aspect, it is inserted in the 

required position in the tree. 

A counting-based self-adjusting search tree that is 

similar to splay trees moves more frequently injected 

nodes closer to the root. After M injections on N items, 

Q of which access some item V1, an operation on V1 

passes through a path length of O (log M/Q) while 

performing fewer if any rotations (Afek et al., 2012). In 

lazy splaying, in addition to the item’s value, each node 

w has three counters: selfCnt, which is an estimate of 

the total number of operations performed on the item in 

w (number of find (w: v) and insert (w: v) operations) 

and rightCnt and leftfCnt, which are estimates of the 

total number of operations that have been performed on 

items in the right and left subtrees, respectively. Each 

find (i) and inject (i) operation increments selfCnt of 

the node containing i. When node i is found in the tree, 

all the nodes along the path from the root to i’s parent 

increase their rightCnt/leftCnt counter depending on 

whether i is in their right or left subtree, respectively 

(Afek et al., 2012; Sleator and Robert, 1985; Bronson  

et al., 2010).  

Figure 3, zig-zag is carried out if the total number 

of accesses to the node’s right subtree is greater than 

the total number of accesses to the  node-parent  and  its 

Table 2: Rebalancing algorithm 

Rebalance (Node parent, Node node) 

{ 

nodePlusLeftCount = node.selfCnt + node.leftCnt; 

parentPlusRightCount = parent.selfCnt + parent.rightCnt; 

nodeRightCount = node.rightCnt; 

//decide whether to perform zig-zag step 

if (nodeRightCount  > = parentPlusRightCount) 

{ 

Node grand = parent.parent; 

ZigZag (grand, parent, node, rightChild); 

parent.leftCnt = rightChild.rightCnt; 

node.rightCnt = rightChild.leftCnt; 

rightChild.rightCnt + = parentPlusRightCount; 

rightChild.leftCnt  + = nodePlusLeftCount; 

} 

else 

//decide whether to perform zig step 

if (nodePlusLeftCount>parentPlusRightCount) 

{ 

Node grand = parent. parent; 

Zig (grand, parent, node, node.right); 

parent.leftCnt = node.rightCnt; 

node.rightCnt + = parentPlusRightCount; 

} 

} 

 

right subtree. If zig-zag is not performed, then zig is 

performed if the total number of accesses to the node 

and its left subtree is greater than the total number of 

accesses to the node-parent and its right subtree.  

After the rotation the rightCnt and leftCnt counters 

are updated to represent the number of accesses in the 
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Fig. 4: Semi-splaying: the colored node is the current node for splaying 

 
Table 3: Examples of same-origin/cross-origin URLs 

URL1 URL2 
Are URL1 and URL2 from  
the same origin? Reason 

http://pec.edu https://pec.edu No Different scheme 
http://pec.edu http://pec.edu:8080 No Different ports 
http://mail.pec.edu http://chat.pec.edu No Different sub domain 
http://pec.edu/usr1/index.php http://pec.edu/usr2/index.php Yes Path is not a part of the origin. Only 

scheme, host and port number 

 

new right/left subtrees, respectively. Note that zig and 

zig-zag have symmetric mirror operations when the 

subtree at node p leans to the right.  

To avoid a chain of nodes where all nodes are left 

(or right) parents of their children in the case of a 

descending/ascending insertion order, when a new node 

is inserted into the tree a re-balancing operation, as 

specified in Table 2, which in turn calls Table 3, is 

performed  from  this  new  node  up  to  the  root.  If  

the  depth  is  greater  than  2logN,  splaying  is 

performed up to the root by using either double 

rotation, in which the total number of accesses to x's 

right subtree is greater than or equal to the total number 

of accesses to x's parent and its right subtree, or single 

rotation, in which the total number of accesses to x and 

its left subtree is greater than the total number of 

accesses to x's parent and its right subtree, as shown in 

Fig. 4.  

In contrast to the traditional self-adjusting splay 

tree in which each accessed item is moved closer to the 

root by means of a sequence of tree rotations, the 

counting-based splay tree performs rotations 

infrequently and mostly at the bottom of the tree. 

Therefore, it  scales  with  the level of concurrency. The 

algorithms given in Table 2 and 4 are used while 

injecting aspects. 

Table 4: Attempt injection algorithm 

AttemptInjection (key, parent, node, height) 
{     if (node = = null) 
           {    node = newnode (key, node); 
                 node.selfCnt++;  node.rightCnt = 0; 
                node.leftCnt = 0; node. height++; break  } 
       else 
          if (key = = node. key) 
             {    if (height >= ((2 * log-size))) 
                  splay (node); else 
               Rebalance (parent, node); 
      node.selfCnt++; return node. value;     } 
While (true) 
 {   //child in the direction of key 
     Child = node.child (key); 
        if (child = = null)           //Not found 
               { //generate a new node and link to node 
            child = newchild (key, node); 
             if (height > = ((2 *log-size))) 
             splay(child); return null;  } 
      else 
result = attemptInjection (key, node, child, height + 1); 
         if (direction to child = = left) 
            node.leftCnt++; else node.rightCnt++; 
if (result = = null) 
         {//for new node check if re-balancing needed 
         // Find the current child of the parent 
       //since it may have changed owing to rotation //in recursive call 
curr-node = parent.child (key); 
         //Child in the direction of key 

          Rebalance (parent, curr-node);  

    } 
       Return result; 

      }  //for while     

}  //for begin 
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Table 5: Aspects and their node labels 

Aspects Node labels 

Exception handling 1 
Persistence 2 
Security 3 
Monitoring 4 
Logging 5 
Synchronization 6 
Transaction processing 7 

 
Case study 1: To construct lazy counting-based splay 
trees, aspects with the corresponding node labels given 
in Table 5 should be considered. 

Injection of synchronization, persistence, 
transaction, exception, monitoring, logging and security 
aspects is shown in Fig. 5 to 8.  

In an unbalanced tree, if the number of operations 

on c and on nodes in cLeft and cRight is greater than 

the number of operations on p and on nodes in pRight, 

then perform a zig-zag rotation. In other words, if 

Node+RightCnt>Parent.Self+rightCnt perform a zig-

zag rotation. According to Fig. 6 and 3 (NodeRightCnt) 

>2 (Parent.Self+rightCnt) and therefore a zig-zag 

rotation is performed. While performing the zig-zag 

rotation, the counter values are updated as follows: 

 

parent.leftCnt = rightChild.rightCnt 

node.rightCnt = rightChild.leftCnt 

rightChild.rightCnt+ = parentPlusRightCount 

rightChild.leftCnt+ = nodePlusLeftCount 

 

 
 

Fig. 5: Injection of synchronization and persistence aspects 

 

 
 

Fig. 6: Injection of transaction, exception and monitoring aspects 

 

 
 

Fig. 7: Injection of logging aspect 
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Fig. 8: Injection of security aspect 

 

 
                                                 

                                                                (a)                                                                     (b) 

 

Fig. 9: (a) During the zig-zag operations, (b) after the zig-zag rotations 

 

Figure 7 shows the intermediate steps while 

performing a zig-zag rotation, while Fig. 8 illustrates 

how the most frequently accessed aspects are moved 

closer to the root node thereby leaving the tree in a 

balanced state. If the tree is in a balanced state, the cost 

of injecting an aspect is proportional to the depth of the 

node (Fig. 9).  

The cost to splay node x at depth d is defined as 

follows. The number of comparisons increases for an 

unsuccessful search to avoid having to go for fictitious 

nodes (external nodes). The search terminates in 

internal nodes when the search is successful and in 

external nodes when the search is unsuccessful. If depth 

d is odd, we need to perform d/2 zig-zig or zig-zag 

rotation operations and d tree-rotation operations. Here 

depth d = 3 and thus, 3/2 = 1 zig-zag operations and 3 

tree-rotation operations are performed. The cost to 

splay node x at depth d depends on the d tree-rotation 

operations involved. 

The amortized cost to splay node x is d+∆ (r (T)). 
∆ (r (T)) refers to the change in balance and can be 
calculated using the difference between �′(T) - r (T): 
 

Before splay (M): r (T) = lg (15) + lg (11) + lg (7) 
+ 4lg (3) 
 
After splay (M): �′(T) - = lg (15) + 2lg (7) + 4lg (3) 

 
The amortized cost of splay (M) is 2.652076697. 
 
Case study 2: To construct lazy counting-based splay 
trees, we consider aspects with the corresponding node 
labels given in Table 6. 

Figure 10 shows the  update  of  the  counter  and  
its organization after injecting aspects like 
synchronization, monitoring, logging, persistence, 
security and exception handling, which all come from 
the same origin. As before, the exception handling 
aspect is injected, after verifying its origin using same-
origin  policy  techniques. If  it  indeed  comes from the 
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Table 6: Aspects and their node labels 

Aspects Node labels 

Exception handling 3 
Persistence 4 
Security 7 
Monitoring 2 
Logging 6 
Synchronization 5 
Transaction processing 1 

 

 
 

Fig. 10: Initial lazy counting-based splay tree with aspects 

 

 
 
Fig. 11: Injection of persistence aspect 

 

 
 

Fig. 12: After zig rotation 

same origin, the exception handling self counter value 
is incremented by one and the rightCnt/leftCnt values 
on the path from the exception handling’s parent to the 
root node are incremented by one depending on 
whether the exception occurred in the left/right subtree. 
Consequently, the synchronization aspect’s rightCnt, 
the logging aspect’s leftCnt and the persistence aspect’s 
leftCnt values are all incremented by one. After 
updating the counter values, either semi-splaying or 
rebalancing operations are performed if balancing is 
needed. The same procedure is applied when injecting 
security, exception and persistence aspects. When 
injecting a persistence aspect, the tree becomes 
unbalanced as shown in Fig. 11. 

In an unbalanced tree if the number of operations 
on n and nodes in nLeft is greater than the number of 
operations on p and nodes in pRight, then perform a zig 
rotation. That is, if Node+leftCnt> parent.Self+rightCnt 
then perform a zig rotation. From Fig. 11 we see that if 
(2+3) Node+leftCnt> (1+2) parent. Self+rightCnt we 
perform a zig rotation. While performing the zig 
rotation the counter values are updated as follows: 

 

parent.leftCnt = node.rightCnt 

 

node.rightCnt+ = parentPlusRightCount 

 

After performing the zig rotation the counter values 
are updated as shown in Fig. 12. 

The cost to splay node x at depth d is defined as 
follows. If depth d is even, we need to perform (d-1)/2 
zig-zig or zig-zag rotations or 1 zig operation and d 
tree-rotation operations. Here depth d = 2 and thus, 1 
zig operation and 2 tree-rotation operations are 
performed: 

 

Before splay (P): r (T) = lg (13) + lg (9) + lg (5) + 

3lg (3) 

 

After splay (P): �′ (T) = lg (13) + lg (9) + lg (5) + 

3lg (3) 

 

The amortized cost of splay (P) is 2.0. 

 

Applying the lazy counting-based splay tree: Good 

security in a system reduces the chance of malicious or 

unintended actions outside the designed usage affecting 

the system and prevents the discovery or loss of 

information. Improving security can also boost the 

reliability of the system by reducing the chances of a 

successful attack that damages system operation. 

Securing a system implies defending the resources and 

avoiding illegitimate access to or alteration of the 

information. Composing a crosscutting concern into a 

requirements model may result in conflicts that have to 

be solved. It is possible that crosscutting concerns can 

cause  contradictory  situations  in  a  system  (Table 7  

and 8). 



 

 

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015 

 

405 

Table 7: Contribution of response time    

Name Response time 

Description  Period of time in which the system must 
respond to a service 

Priority Very important 
Decomposition None 
Contribution (-) to security and (-) to multi-access 

 
Table 8: Contribution of security aspects  

Name Security 

Description  Restricts access to the system and to the 
data by using a same-origin policy 

Priority Very important 
Decomposition Integrity and confidentiality 
Contribution (-) to response time and (+) to correctness 

 
We have come across a situation where during the 

composition of crosscutting concerns with functional 
concerns, conflicting activities may occur. For example, 
response time and security are two crosscutting 
concerns that affect a system. When trying to compose 
these concerns, a conflict will occur, since both 
crosscutting concerns contribute negatively to each 
other. Thus, a tradeoff has to be found in terms of 
which crosscutting concern should have the highest 
priority and be composed first.  

This contribution can be positive or negative. If 
two (or more) crosscutting concerns contribute 
negatively to each other, a conflicting situation occurs 
if and only if these crosscutting concerns influence the 
same set of requirements. To resolve these kinds of 
conflicts, which affect the whole system or parts 
thereof, a tradeoff is discussed with the stakeholders. In 

this situation, we propose the application of a lazy 

counting-based splay tree as this requires less time to 

check for operations like lookup () and attempt inject () 

and hence we need not perform tradeoff analysis 

between crosscutting concerns like response time and 

security. 

 

METRIC EVALUATION AND DISCUSSION 

 

The results are promising and show good potential 

for lazy counting-based splays, which is capable of 

analyzing the overall performance of splay trees versus 

lazy counting-based splay trees. Interesting results are 

obtained from this comparison. Both splay trees and 

counting-based splay trees use implicit caching by 

bringing the aspect to the root element and taking 

advantage of locality in incoming lookup requests for 

the aspect. Locality in this context refers to looking for 

the same aspect several times. A stream of requests 

exhibits no locality if every aspect is equally likely to 

be injected at each point. For our applications, locality 

does exist since aspects tend to be injected repeatedly 

(Fig. 13). 

In lazy counter-based splay trees, according to the 
splay rotations involved, since most frequently accessed 
aspects move closer to the root, the depth of the tree is 
reduced and hence the delay in rotations tends to be 
stable (Fig. 14). 

 

 
 

Fig. 13: Delay versus number of rotations 
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Fig. 14: Response time versus number of nodes 

 

 
 

Fig. 15: Splay ratio versus number of rotations 
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In counter-based splay trees, over a period of time 

as the number of most frequently accessed nodes 

increases, the response time is reduced since most 

frequently accessed aspects are moved closer to the root 

(Fig. 15). 

Comparing the splay ratio in both splay trees and 

lazy counter-based splay trees, by using the formula 

splay ratio = number of operations/number of splay, its 

values are in increasing order in counter-based lazy 

splay trees as the number of splay operations is largely 

reduced owing to the application of the counter-based 

technique.  

 

CONCLUSION AND RECOMMENDATIONS 

 

Conflicts between software quality attributes are 

common. Poor quality eventually affects cost and 

schedule because software requires fine-tuning, 

recoding, or even redesign to meet original 

requirements. Design flaws and policy errors or bugs 

are some of the sources of security flaws in software. 

This research study has been used to check whether 

pointcut aspects belong to the same origin and to apply 

the lazy counter-based splaying technique to reduce the 

time complexity needed to inject the legitimate pointcut 

aspects with the core functionality. This approach can 

be used effectively when implementing tradeoff 

analysis among aspects like security and response time. 

Security is a primary concern in software development 

and has generated a great deal of awareness amongst 

experts. Furthermore, few web evangelists argue that 

the same origin policy is too strict to block genuine 

third party aspects, which are essential for strict 

security in an application. As a future work, stack-based 

methods will be used to find fraudulently injected 

aspects even if they come from the same origin.  
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