
Research Journal of Applied Sciences, Engineering and Technology 9(6): 396-408, 2015

DOI:10.19026/rjaset.9.1419

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: September 24, 2014 Accepted: October 24, 2014 Published: February 25, 2015

Corresponding Author: K. Santhi, Department of CSE, Pondicherry Engineering College, Puducherry, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

396

Research Article
Trade-off Analysis of Crosscutting Functionalities using Lazy Counting-based Splay

Tree in Aspect Oriented Programming

1
K. Santhi,

1
G. Zayaraz and

2
T.

Chellatamilan

1
Deparnment of CSE, Pondicherry Engineering College, Puducherry, India
2
Deparnment of CSE, Arunai Engineering College, Tiruvannamalai, India

Abstract: Aspect Oriented Programming (AOP) provides new modularization of software systems through
encapsulation of crosscutting functionalities, providing a clear isolation and utilization thereof. The trade-offs are
typically a consequence of technical contradictions in requirements. We employ a data structure called a lazy
counting based splay tree to analyze the trade-off between the conflicting quality attributes. These contradictions
must be conquered in order to achieve breakthrough. The performance of this data structure is verified after
considering Cross Site Request Forgery (CSRF) which could be prevented by same-origin policy. The results are
promising and show good potential for lazy counting-based splaying, which is capable of analyzing the overall
performance of a splay tree compared with a lazy counting-based splay tree and providing interesting results about
both.

Keywords: Aspect-oriented programming, crosscutting functionalities, cross-site request forgery, lazy counting-

based splay tree, same-origin policy, trade-off analysis

INTRODUCTION

Developing an application software system always

demands consideration of both functional and non-
functional requirements. Modularizing the expansion of
different requirements has important advantages in
system evolution. Since such requirements typically
originate from different stakeholders, they may cause
different iterations of various parts of the software
development process. Successful distribution of
concerns can guide effortless development, maintenance
and possible reuse, amongst others (Boström, 2004).
State-of-the-art software techniques already support
separation of concerns, for example, by means of
method structuring, Object-Oriented Programming
(OOP) and design patterns. On the other hand, these
techniques are inadequate for separating the crosscutting
functionality in broad-based functionality. A major
cause of this limitation is the separation of concerns in
an intuitive manner by grouping them into objects,
though this technique is only efficient in separating
concepts that map easily to objects and not for
separating concerns.

Aspect-Oriented Programming (AOP) provides
techniques for managing crosscutting concerns into a
single manageable component, which is referred to as an
aspect. The concept of an aspect is at the heart of AOP
and is used to solve many problems, such as
representations of tangling and scattering. Tangling
refers to how concerns intermingle with each other in a

module, while scattering refers to how concerns are
separated over many modules.

However, the detection and order of crosscutting
concerns and their consideration as an aspect, are
challenging tasks. Developing secure software systems
requires more than protecting objects from illegal
manipulation; it also requires the prevention of illegal
information flow among objects in a system (Izaki et al.,
2001).

Another benefit of AOP is that because the core
functionality of the system is executed separately, the
developer no longer needs to refer to or use security
mechanisms in the system. Implementing security could
be left to a security expert and security policies can be
independently implemented (Win et al., 2002).

Incorporating information flow control during
software development is tremendously challenging.
First, the main issue with building real applications with
information flow options is interfacing the new
application with existing infrastructure that has not been
designed with information flow in mind. Second, it is
challenging to manage and assign security policies
throughout the software development process. Third, the
programmer is required to understand not only the
algorithm, but also what the desired security policy is
and how it can be formalized (Zdancewic, 2004).

Several authors have discussed the benefits of using

AOP to implement security concerns (Viega et al., 2001;

De Win et al., 2001). Aspect-oriented software

development is relevant to all the key aspects of

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

397

Fig. 1: Pointcut and its advices

security, namely, verification, validation, access control,

integrity checks, non-repudiation and synchronization,

as well as for supporting the administration and

exception handling required for effective security.

Aspect-oriented software design is flexible enough to

accommodate the implementation of additional security

features after the functional system has been developed.

Overview of aspect-oriented programming: AOP is

the perfect complement to OOP in software engineering

by providing more advanced modularization techniques

to handle the scattering and tangling problems than

existing models.

In OOP the objects have properties and perform

intended actions. However, the process of applying

abstracted functionality is performed by the developer,

which is more error prone and hence, less secure. On the

contrary, in AOP this process is performed

methodically, consistently and more precisely by the

aspect weaver. In AOP the aspects have properties that

can affect the entire performance or that of some of the

components, such as the way a method is executed,

synchronization, concurrency, resource allocation,

exception handling, logging and so on.

The main feature of this technology is its ability to

specify both the behavior of one specific functionality as

well as binding this functionality to other functionalities

or non-functionalities such as its relation to these.

An aspect is a modular unit of a crosscutting

implementation, which is provided in terms of pointcuts

and advices, specifying what type of advice and when a

pointcut aspect is going to be executed, as shown in

Fig. 1. In the execution of a program, there will be join

points where calls to an aspect can be injected. A

pointcut is used to find a set of join points where an

aspect can be injected. An advice declaration can be

used to specify code that should run when the join points

specified by the pointcut expression are reached. The

advice code will be executed when a particular join

point is reached, either before or after execution

proceeds. A before/after advice on a method execution

defines code that must be run before/after the particular

method is executed, while an around advice defines

code that is executed when the join point is reached and

has control over whether the computation at the join

point is allowed to be performed (Kiczales et al., 2001).

The final application is created using both the

functional code and its specific pointcut aspects. These

two entities are combined to generate the byte code at

compile time by invoking a special method called a

weaver.

LITERATURE REVIEW

A software system that manipulates and stores

credentials like passwords, identification documents,

security clearances and tax information must prevent

such information from being leaked during execution

(Sabelfeld and Myers, 2003). Security mechanisms,

such as firewalls or anti-virus software and also access

control mechanisms are not adequate to protect against

this type of information leakage. For example,

determining whether communication breaches

confidentiality is beyond the scope of any firewall

mechanism. Similarly with encryption, there is no

guarantee that once data is decrypted that its

confidentiality will be maintained (Sabelfeld and Myers,

2003). An access control policy determines the right to

access objects containing information (Huang et al.,

2004). However, this type of control only relates to the

release of data and does not control how data ‘flows’

during the execution of each statement in a program.

Numerous instances of information “leakage” arise not

from defective access control, but from the lack of

policies about information flow (Wand et al., 2004).

According to Mourad et al. (2008), AOP permits

security hardening of applications by allowing the

incorporation of supplementary security requirements to

previously existing code that was designed to operate in

a different security context. AOP also permits the

integration of security into applications even when the

source code is no longer available. For example, it may

be required to apply tighter security requirements to

legacy applications for which the source code may have

been lost. In addition, with AOP, security can be

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

398

selectively applied to important areas of the application

either explicitly or declaratively without having to

change the code. The capability to declaratively

applying security to specific areas of the code also

provides the ability to easily apply multiple security

features to a specific scheme.

The Bell-La Padula (Bell, 2005) model is a

mathematical model that utilizes the principles of

mathematical theory to describe access methods in

computer systems. This model uses four access modes,

namely, read, append, execute and write. A set of rules

is defined and proved to possess certain characteristics

such as preserving simple security, discretional security

and the *-property. The Bell-La Padula model has

mostly been applied in military based systems where

confidentiality of data is of the utmost priority.

The Biba Stewart et al. (2005) model was

developed after the Bell-La Padula model and followed

similar principles of mathematical state machines to

address the issue of data integrity. This model has

mainly been used in commercial applications where the

integrity of data is of greater concern than its

confidentiality.

De Win et al. (2001) defined three types of aspects,

namely, identification, authentication and authorization,

for access control policies in the aspect-oriented

paradigm. The identification aspect is used to tag those

entities that must be authenticated and is used as a

container for identity information of the subject.

The authentication aspect passes authentication

information to the access control mechanism. The

authorization aspect checks access based on the identity

information received from the authentication aspect.

Ramachandran et al. (2006) also addressed

authentication and authorization within the aspect-

oriented paradigm by providing a more general

approach. However, they do not address information

flows.

Kawauchi and Masuhara (2004) used an aspect to

identify cross-site scripting. Their approach is

predicated on validating the parameters by replacing

special characters by quoted ones within input files

submitted by users to web applications. They found that

although sanitizing is a crosscutting concern, there is no

possible way to define a pointcut that would be able to

detect whether a string originated from an unauthorized

source or contained unwanted information. Hence, they

proposed a new pointcut called dflow that addresses the

dataflow between join points as an extension to the

AspectJ language. Kawauchi and Masuhara (2004) do

not address security classifications or their dataflow

definitions and only deal with direct information flow.

Furthermore, they do not comment on transmission of

information between objects in a method. Since no

advancement has been made exclusively in this area and

since AOP and OOP are complementary, it is important

to investigate information flow control and security

policies from this viewpoint first.

Hermosillo et al. (2007) proposed a solution for

web security against SQL injection and XSS attacks

using AOP. Their work is a test of the reward for

chaining security policies at runtime, with testing carried

out against the first two insecurities, SQL injection and

XSS. The solution presented provides a security aspect

for a web application server. The authors have used

aspects to validate the injected SQL in the web

application server and also to validate XSS attacks in the

user’s requests to the web application and from the web

server to a database server. This allows the interception

of all database accesses and the validation thereof before

potentially dangerous information is stored (Lee et al.,

2012). A significant amount of work has been carried

out in aspect-oriented security to make the process more

systematic in terms of software design and development

(De Win et al., 2002; De Win et al., 2001; Hermosillo

et al., 2007).

Simic and Walden (2013) designed a system to

mitigate cross-site scripting and SQL injection

vulnerabilities, the most common web application

vulnerabilities, with no demand in expensive and

potentially hazardous modifications to the source code

of Web applications. At runtime, the application

executes the protective aspect code to mitigate security

issues when a block of vulnerable code is executed.

The subsequent discussion highlights the relevance

of aspect-oriented technology in terms of implementing

some of the key components of security such as access

control, authentication, persistence, transaction and

monitoring, exception handling and synchronization in

software systems.

METHODOLOGY

An aspect-based approach for representing

information flow control: Plugging in non-functional

aspects to functional aspects may result in several

attacks, which may lead to a change in the composition

rules, modifying the precedence of advices, unexpected

behavior combinations, unhandled inputs and so on.

These security vulnerabilities can be taken

advantage of by using Cross-Site Request Forgery

(CSRF or XSRF). A user may not be aware that such an

attack has occurred and may only find out about the

attack after the damage has been done since no remedy

is applied. To avoid such attacks, the approach of using

same-origin policies could be applied.

To secure the functionality completely, one needs to

perform internal dataflow analysis and ensure that un-

trusted input is sanitized before being used and that

sensitive data is not released without authorization.

Identifying illegal flows between objects requires an

aspect based on the principle of a same-origin policy.

Here pointcuts can be utilized to identify flows between

objects. This aspect observes objects and intercepts

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

399

Table 1: Injection of risky aspects

Aspect CSRFRestriction {

pointcut aspect injection (Aspect aspect)

execution (*Aspect.* (..)) && this (aspect)

before (Aspect aspect): aspectInjection (aspect) {

//reference to the same origin this aspect is deployed in

Sop sop = …;

//this aspect does not belong to same origin policy

If (! sop. belongs (aspect)) {

throw new AccessControlException ();

}

}}

messages flowing between them. The aspect’s advice

would then determine upon examining the given

message and classification of the sender and recipient,

whether to allow the information flow. A same-origin

policy helps to detect these and many other

vulnerabilities by identifying data sources and sinks and

how secure they are. Generally, all sources outside the

component should be considered untrustworthy (e.g.,

system calls, third party plug-ins and routines that can

copy data from the user space or network).

The same-origin policy approach is utilized to apply

the policy model at runtime, thereby allowing aspects

originating from the same location, such as a

combination of scheme, hostname and port number. The

weaver supplements woven software with logic to

maintain the permission state of the software. As such,

only the weaver is altered and no modification to the

virtual machine or language semantics is needed.

Table 1 illustrates how the mechanism of injection

can be used to disable a CSRF malicious aspect by

intrinsically calling security features.

This policy protects against eventualities in which

un-trusted aspects, which may originate from third party

libraries (especially from CSRF), are incorrectly woven

into the rest of the application code, as shown in

Fig. 2. This policy has the means to detect and prevent a

number of remote-user exploits, such as cross-site

scripting, HTML injection, SQL injection and command

injection (Simic and Walden, 2013). Severe security

flaws would exist if there were no restrictions

isolating the aspect from different origins and all the

pointcuts of aspects between them were allowed. While

it may be considered safe to perform the pointcut of

aspects between different origins through hyperlinks,

automated injection of aspects could potentially be

dangerous.

Lazy counting-based splay tree: By injecting

crosscutting functionalities into core functionalities,

cross site request forgery could results in many attacks.

CSRF attack can be used to modify the precedence of

advices and unexpected combinations, fire unauthorized

aspects, prevent the aspects from advising a joining

point, or conduct fraudulent financial transactions. To

organize injected aspects from the same origin, a

counting-based splay tree is used. While the authorized

aspect could be compromised after the same origin

policy is verified before injection into the core

functionality, when a new pointcut aspect enters the

system the following actions are needed:

• The CSRF is checked using the same origin policy

• Legitimacy of the code is verified

If the pointcut is already available in the counting-

based splay tree, the counters are updated accordingly

Fig. 2: Approach using a same-origin policy

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

400

Fig. 3: Splaying steps: zig and zig-zag

and the pointcut aspect is injected into the core

functionality. The most frequently accessed aspects are

moved closer to the root to minimize search time. If it is

a newly arrived pointcut aspect, it is inserted in the

required position in the tree.

A counting-based self-adjusting search tree that is

similar to splay trees moves more frequently injected

nodes closer to the root. After M injections on N items,

Q of which access some item V1, an operation on V1

passes through a path length of O (log M/Q) while

performing fewer if any rotations (Afek et al., 2012). In

lazy splaying, in addition to the item’s value, each node

w has three counters: selfCnt, which is an estimate of

the total number of operations performed on the item in

w (number of find (w: v) and insert (w: v) operations)

and rightCnt and leftfCnt, which are estimates of the

total number of operations that have been performed on

items in the right and left subtrees, respectively. Each

find (i) and inject (i) operation increments selfCnt of

the node containing i. When node i is found in the tree,

all the nodes along the path from the root to i’s parent

increase their rightCnt/leftCnt counter depending on

whether i is in their right or left subtree, respectively

(Afek et al., 2012; Sleator and Robert, 1985; Bronson

et al., 2010).

Figure 3, zig-zag is carried out if the total number

of accesses to the node’s right subtree is greater than

the total number of accesses to the node-parent and its

Table 2: Rebalancing algorithm

Rebalance (Node parent, Node node)

{

nodePlusLeftCount = node.selfCnt + node.leftCnt;

parentPlusRightCount = parent.selfCnt + parent.rightCnt;

nodeRightCount = node.rightCnt;

//decide whether to perform zig-zag step

if (nodeRightCount > = parentPlusRightCount)

{

Node grand = parent.parent;

ZigZag (grand, parent, node, rightChild);

parent.leftCnt = rightChild.rightCnt;

node.rightCnt = rightChild.leftCnt;

rightChild.rightCnt + = parentPlusRightCount;

rightChild.leftCnt + = nodePlusLeftCount;

}

else

//decide whether to perform zig step

if (nodePlusLeftCount>parentPlusRightCount)

{

Node grand = parent. parent;

Zig (grand, parent, node, node.right);

parent.leftCnt = node.rightCnt;

node.rightCnt + = parentPlusRightCount;

}

}

right subtree. If zig-zag is not performed, then zig is

performed if the total number of accesses to the node

and its left subtree is greater than the total number of

accesses to the node-parent and its right subtree.

After the rotation the rightCnt and leftCnt counters

are updated to represent the number of accesses in the

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

401

Fig. 4: Semi-splaying: the colored node is the current node for splaying

Table 3: Examples of same-origin/cross-origin URLs

URL1 URL2
Are URL1 and URL2 from
the same origin? Reason

http://pec.edu https://pec.edu No Different scheme
http://pec.edu http://pec.edu:8080 No Different ports
http://mail.pec.edu http://chat.pec.edu No Different sub domain
http://pec.edu/usr1/index.php http://pec.edu/usr2/index.php Yes Path is not a part of the origin. Only

scheme, host and port number

new right/left subtrees, respectively. Note that zig and

zig-zag have symmetric mirror operations when the

subtree at node p leans to the right.

To avoid a chain of nodes where all nodes are left

(or right) parents of their children in the case of a

descending/ascending insertion order, when a new node

is inserted into the tree a re-balancing operation, as

specified in Table 2, which in turn calls Table 3, is

performed from this new node up to the root. If

the depth is greater than 2logN, splaying is

performed up to the root by using either double

rotation, in which the total number of accesses to x's

right subtree is greater than or equal to the total number

of accesses to x's parent and its right subtree, or single

rotation, in which the total number of accesses to x and

its left subtree is greater than the total number of

accesses to x's parent and its right subtree, as shown in

Fig. 4.

In contrast to the traditional self-adjusting splay

tree in which each accessed item is moved closer to the

root by means of a sequence of tree rotations, the

counting-based splay tree performs rotations

infrequently and mostly at the bottom of the tree.

Therefore, it scales with the level of concurrency. The

algorithms given in Table 2 and 4 are used while

injecting aspects.

Table 4: Attempt injection algorithm

AttemptInjection (key, parent, node, height)
{ if (node = = null)
 { node = newnode (key, node);
 node.selfCnt++; node.rightCnt = 0;
 node.leftCnt = 0; node. height++; break }
 else
 if (key = = node. key)
 { if (height >= ((2 * log-size)))
 splay (node); else
 Rebalance (parent, node);
 node.selfCnt++; return node. value; }
While (true)
 { //child in the direction of key
 Child = node.child (key);
 if (child = = null) //Not found
 { //generate a new node and link to node
 child = newchild (key, node);
 if (height > = ((2 *log-size)))
 splay(child); return null; }
 else
result = attemptInjection (key, node, child, height + 1);
 if (direction to child = = left)
 node.leftCnt++; else node.rightCnt++;
if (result = = null)
 {//for new node check if re-balancing needed
 // Find the current child of the parent
 //since it may have changed owing to rotation //in recursive call
curr-node = parent.child (key);
 //Child in the direction of key

 Rebalance (parent, curr-node);

 }
 Return result;

 } //for while

} //for begin

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

402

Table 5: Aspects and their node labels

Aspects Node labels

Exception handling 1
Persistence 2
Security 3
Monitoring 4
Logging 5
Synchronization 6
Transaction processing 7

Case study 1: To construct lazy counting-based splay
trees, aspects with the corresponding node labels given
in Table 5 should be considered.

Injection of synchronization, persistence,
transaction, exception, monitoring, logging and security
aspects is shown in Fig. 5 to 8.

In an unbalanced tree, if the number of operations

on c and on nodes in cLeft and cRight is greater than

the number of operations on p and on nodes in pRight,

then perform a zig-zag rotation. In other words, if

Node+RightCnt>Parent.Self+rightCnt perform a zig-

zag rotation. According to Fig. 6 and 3 (NodeRightCnt)

>2 (Parent.Self+rightCnt) and therefore a zig-zag

rotation is performed. While performing the zig-zag

rotation, the counter values are updated as follows:

parent.leftCnt = rightChild.rightCnt

node.rightCnt = rightChild.leftCnt

rightChild.rightCnt+ = parentPlusRightCount

rightChild.leftCnt+ = nodePlusLeftCount

Fig. 5: Injection of synchronization and persistence aspects

Fig. 6: Injection of transaction, exception and monitoring aspects

Fig. 7: Injection of logging aspect

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

403

Fig. 8: Injection of security aspect

 (a) (b)

Fig. 9: (a) During the zig-zag operations, (b) after the zig-zag rotations

Figure 7 shows the intermediate steps while

performing a zig-zag rotation, while Fig. 8 illustrates

how the most frequently accessed aspects are moved

closer to the root node thereby leaving the tree in a

balanced state. If the tree is in a balanced state, the cost

of injecting an aspect is proportional to the depth of the

node (Fig. 9).

The cost to splay node x at depth d is defined as

follows. The number of comparisons increases for an

unsuccessful search to avoid having to go for fictitious

nodes (external nodes). The search terminates in

internal nodes when the search is successful and in

external nodes when the search is unsuccessful. If depth

d is odd, we need to perform d/2 zig-zig or zig-zag

rotation operations and d tree-rotation operations. Here

depth d = 3 and thus, 3/2 = 1 zig-zag operations and 3

tree-rotation operations are performed. The cost to

splay node x at depth d depends on the d tree-rotation

operations involved.

The amortized cost to splay node x is d+∆ (r (T)).
∆ (r (T)) refers to the change in balance and can be
calculated using the difference between �′(T) - r (T):

Before splay (M): r (T) = lg (15) + lg (11) + lg (7)
+ 4lg (3)

After splay (M): �′(T) - = lg (15) + 2lg (7) + 4lg (3)

The amortized cost of splay (M) is 2.652076697.

Case study 2: To construct lazy counting-based splay
trees, we consider aspects with the corresponding node
labels given in Table 6.

Figure 10 shows the update of the counter and
its organization after injecting aspects like
synchronization, monitoring, logging, persistence,
security and exception handling, which all come from
the same origin. As before, the exception handling
aspect is injected, after verifying its origin using same-
origin policy techniques. If it indeed comes from the

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

404

Table 6: Aspects and their node labels

Aspects Node labels

Exception handling 3
Persistence 4
Security 7
Monitoring 2
Logging 6
Synchronization 5
Transaction processing 1

Fig. 10: Initial lazy counting-based splay tree with aspects

Fig. 11: Injection of persistence aspect

Fig. 12: After zig rotation

same origin, the exception handling self counter value
is incremented by one and the rightCnt/leftCnt values
on the path from the exception handling’s parent to the
root node are incremented by one depending on
whether the exception occurred in the left/right subtree.
Consequently, the synchronization aspect’s rightCnt,
the logging aspect’s leftCnt and the persistence aspect’s
leftCnt values are all incremented by one. After
updating the counter values, either semi-splaying or
rebalancing operations are performed if balancing is
needed. The same procedure is applied when injecting
security, exception and persistence aspects. When
injecting a persistence aspect, the tree becomes
unbalanced as shown in Fig. 11.

In an unbalanced tree if the number of operations
on n and nodes in nLeft is greater than the number of
operations on p and nodes in pRight, then perform a zig
rotation. That is, if Node+leftCnt> parent.Self+rightCnt
then perform a zig rotation. From Fig. 11 we see that if
(2+3) Node+leftCnt> (1+2) parent. Self+rightCnt we
perform a zig rotation. While performing the zig
rotation the counter values are updated as follows:

parent.leftCnt = node.rightCnt

node.rightCnt+ = parentPlusRightCount

After performing the zig rotation the counter values
are updated as shown in Fig. 12.

The cost to splay node x at depth d is defined as
follows. If depth d is even, we need to perform (d-1)/2
zig-zig or zig-zag rotations or 1 zig operation and d
tree-rotation operations. Here depth d = 2 and thus, 1
zig operation and 2 tree-rotation operations are
performed:

Before splay (P): r (T) = lg (13) + lg (9) + lg (5) +

3lg (3)

After splay (P): �′ (T) = lg (13) + lg (9) + lg (5) +

3lg (3)

The amortized cost of splay (P) is 2.0.

Applying the lazy counting-based splay tree: Good

security in a system reduces the chance of malicious or

unintended actions outside the designed usage affecting

the system and prevents the discovery or loss of

information. Improving security can also boost the

reliability of the system by reducing the chances of a

successful attack that damages system operation.

Securing a system implies defending the resources and

avoiding illegitimate access to or alteration of the

information. Composing a crosscutting concern into a

requirements model may result in conflicts that have to

be solved. It is possible that crosscutting concerns can

cause contradictory situations in a system (Table 7

and 8).

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

405

Table 7: Contribution of response time

Name Response time

Description Period of time in which the system must
respond to a service

Priority Very important
Decomposition None
Contribution (-) to security and (-) to multi-access

Table 8: Contribution of security aspects

Name Security

Description Restricts access to the system and to the
data by using a same-origin policy

Priority Very important
Decomposition Integrity and confidentiality
Contribution (-) to response time and (+) to correctness

We have come across a situation where during the

composition of crosscutting concerns with functional
concerns, conflicting activities may occur. For example,
response time and security are two crosscutting
concerns that affect a system. When trying to compose
these concerns, a conflict will occur, since both
crosscutting concerns contribute negatively to each
other. Thus, a tradeoff has to be found in terms of
which crosscutting concern should have the highest
priority and be composed first.

This contribution can be positive or negative. If
two (or more) crosscutting concerns contribute
negatively to each other, a conflicting situation occurs
if and only if these crosscutting concerns influence the
same set of requirements. To resolve these kinds of
conflicts, which affect the whole system or parts
thereof, a tradeoff is discussed with the stakeholders. In

this situation, we propose the application of a lazy

counting-based splay tree as this requires less time to

check for operations like lookup () and attempt inject ()

and hence we need not perform tradeoff analysis

between crosscutting concerns like response time and

security.

METRIC EVALUATION AND DISCUSSION

The results are promising and show good potential

for lazy counting-based splays, which is capable of

analyzing the overall performance of splay trees versus

lazy counting-based splay trees. Interesting results are

obtained from this comparison. Both splay trees and

counting-based splay trees use implicit caching by

bringing the aspect to the root element and taking

advantage of locality in incoming lookup requests for

the aspect. Locality in this context refers to looking for

the same aspect several times. A stream of requests

exhibits no locality if every aspect is equally likely to

be injected at each point. For our applications, locality

does exist since aspects tend to be injected repeatedly

(Fig. 13).

In lazy counter-based splay trees, according to the
splay rotations involved, since most frequently accessed
aspects move closer to the root, the depth of the tree is
reduced and hence the delay in rotations tends to be
stable (Fig. 14).

Fig. 13: Delay versus number of rotations

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

406

Fig. 14: Response time versus number of nodes

Fig. 15: Splay ratio versus number of rotations

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

407

In counter-based splay trees, over a period of time

as the number of most frequently accessed nodes

increases, the response time is reduced since most

frequently accessed aspects are moved closer to the root

(Fig. 15).

Comparing the splay ratio in both splay trees and

lazy counter-based splay trees, by using the formula

splay ratio = number of operations/number of splay, its

values are in increasing order in counter-based lazy

splay trees as the number of splay operations is largely

reduced owing to the application of the counter-based

technique.

CONCLUSION AND RECOMMENDATIONS

Conflicts between software quality attributes are

common. Poor quality eventually affects cost and

schedule because software requires fine-tuning,

recoding, or even redesign to meet original

requirements. Design flaws and policy errors or bugs

are some of the sources of security flaws in software.

This research study has been used to check whether

pointcut aspects belong to the same origin and to apply

the lazy counter-based splaying technique to reduce the

time complexity needed to inject the legitimate pointcut

aspects with the core functionality. This approach can

be used effectively when implementing tradeoff

analysis among aspects like security and response time.

Security is a primary concern in software development

and has generated a great deal of awareness amongst

experts. Furthermore, few web evangelists argue that

the same origin policy is too strict to block genuine

third party aspects, which are essential for strict

security in an application. As a future work, stack-based

methods will be used to find fraudulently injected

aspects even if they come from the same origin.

REFERENCES

Afek, Y., H. Kaplan, B. Korenfeld, A. Morrison and

R.E. Tarjan, 2012. CBTree: A practical concurrent

self-adjusting search tree. Proceeding of the 26th

International Conference on Distributed

Computing (DISC, 2012), pp: 1-15.

Bell, D.E., 2005. Looking back at the bell-la padula

model. Proceeding of the 21st Annual Computer

Security Applications Conference, pp: 15-351.

Boström, G., 2004. A case study on estimating the

software engineering properties of implementing

database encryption as an aspect. Proceeding of the

3rd International Conference on Aspect-oriented

Software Development. Lancaster, UK, pp: 1-6.

Bronson, N.G., J. Casper, H. Chafi and K. Olukotun,

2010. A practical concurrent binary search tree.

Proceeding of the 15th ACM SIGPLAN

Symposium on Principals of Parallel Programming.

De Win, B., B. Vanhaute and B. Decker, 2001. Security
through aspect-oriented programming. Proceeding
of the IFIP TC11 WG11.4 1st Working Conference
on Network Security Advances in Network and
Distributed Systems Security. Leuven, Belgium,
pp: 125-138.

De Win, B., B. Vanhaute and B. De Decker, 2002. How
aspect oriented programming can help to build
secure software. Informatica, 26(2): 141-149.

Hermosillo, G., R. Gomez, L. Seinturier and
L. Duchien, 2007. AProSec: An aspect for
programming secure web applications. Proceeding
of the 2nd International Conference on
Availability, Reliability and Security (ARES'07),
pp: 1026-1033.

Huang, Y.W., F. Yu, C. Hang, C.H. Tsai, D.T. Lee and
S.Y. Kuo, 2004. Securing web application code by
static analysis and runtime protection. Proceeding
of the 13th International Conference on World
Wide Web, pp: 40-52.

Izaki, K., K. Anaka and M. Takizawa, 2001.
Information flow control in role- based model for
distributed objects. Proceeding of the 8th
International Conference on Parallel and
Distributed Systems. Kyongju City, Korea, pp:
363-370.

Kawauchi, K. and H. Masuhara, 2004. Dataflow
pointcut for integrity concern. Proceeding of
AOSD 2004 Workshop on AOSD Technology for
Application Level Security (AOSDSEC).

Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten and
J. Palm, 2001. Getting started with aspect
J. Commun. ACM, 44(10): 59-65.

Lee, J., K.H. Hsu, S.J. Lee and W. T. Lee, 2012.
Discovering early aspects through goals
interactions. Proceeding of the 19th Asia-Pacific
Software Engineering Conference (APSEC,
2012), 1: 97-106.

Mourad, A., M.A. Laverdiére and M. Debbabi, 2008.
An aspect-oriented approach for the systematic
security hardening of code. Comput. Secur.,
27(3-4): 101-114.

Ramachandran, R., D.J. Pearce and I. Welch, 2006.
Aspect j for multilevel security. Proceeding of the
5th AOSD Workshop on Aspects, Components and
Patterns for Infrastructure Software (ACP4IS).
Bonn, Germany.

Sabelfeld, A. and A.C. Myers, 2003. Language-based
information-flow security. IEEE J. Sel. Area.
Comm., 21(1): 5-9.

Simic, B. and J. Walden, 2013. Eliminating SQL

injection and cross site scripting using aspect

oriented programming. In: Jurjens, J., B. Livshits

and R. Scandariato (Eds.), ESSOS 2013. LNCS

7781, Springer-Verlag, Berlin, Heidelberg, pp:

213-228.

Sleator, D.D. and E.T. Robert, 1985. Self-adjusting

binary search trees. J. ACM (JACM), 32(3):

652-686.

Res. J. Appl. Sci. Eng. Technol., 9(6): 396-408, 2015

408

Stewart, J.M., E. Tittel and M. Chapple, 2005. CISSP:
Certified Information Systems Security
Professional Study Guide. 3rd Edn., Sybex Inc.,
San Francisco.

Viega, J., J.T. Bloch and P. Chandra, 2001. Applying
aspect-oriented programming to security. Cutter IT
J., 14(2): 31-39.

Wand, M., G. Kiczales and C. Dutchyn, 2004.
Semantics for advice and dynamic join points in
aspect oriented programming. ACM T. Progr.
Lang. Sys. (TOPLAS), 26(5): 890-910.

Win, B.D., F. Piessens, W. Joosen and T.

Verhanneman, 2002. On the importance of the

separation-of-concerns principle in secure software

engineering. Department of Computer Science,

Katholieke Universiteit, Leuven.

Zdancewic, S., 2004. Challenges for information-flow

security. Proceeding of the 1st International

Workshop on Programming Language Interference

and Dependence (PLID, 2004). Verona, pp: 1-5.

