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Abstract: This study aims to investigate and analyze the axisymmetric free vibration of non-local annular and 
circular Mindlin plates at the micro/nano scale which are modeled using Eringen’s nonlocal elasticity theory, taking 
into consideration the small scale effect. The governing equations are derived using the nonlocal differential 
constitutive relations of Eringen. For this purpose, the resulted eigenvalue problem is solved numerically by 
applying the Chebyshev collocation method. The effects of the inner to outer radius ratio, the thickness to outer 
radius ratio, the nonlocal scale effect and the boundary conditions on the natural frequencies are studied. 
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INTRODUCTION 
 

Due to their significant role in different 
engineering and modern technology fields such as 
aerospace, communications, composites, electronics, 
micro electro mechanical systems and nano 
electromechanical systems, micro and nano structures 
have gained appreciated consideration. These structures 
have more superior mechanical, electrical and thermal 
properties comparing with other structures at the 
normal length scale as they are high sensitive and high 
frequency devices for different applications (Murmu 
and Pardhan, 2009a). 

In order to design a realistic model of a micro or a 
nanostructure, optimize and improve their performance 
and to well understand it, the small-scale effects and the 
atomic forces must be taken into consideration. In 
objects at the micro and nano scales, the dimensions, 
wavelengths and sizes of these structures are no longer 
considered much larger than the characteristic 
dimensions of the microstructure. In these cases, the 
internal length scales of the material are comparable 
with the structure size. Moreover, the particles affect 
each other by long range cohesive forces in addition to 
the contact forces and heat diffusion. Consequently, the 
internal length scale should be considered as a material 
parameter called nonlocal parameter in the constitutive 
and governing equations and relations. 

Although the experimental and atomistic 
simulations and models are both capable to show the 
effects of the small-scale on the mechanical properties 
of the micro/nanostructures, these methods are 
expensive and restricted by computational capacity. It is 
well known that the local continuum theories for beams 
(Euler and Timoshenko) and plates (Kirchhoff and 

Mindlin) are scale free. Therefore, they are not able to 
capture the small scale effect on the mechanical, 
electrical and thermal properties for very small beam 
and plate like structures, which makes them inadequate 
in describing the dynamical behavior for these 
structures (Wang et al., 2007). In order to apply the 
continuum mechanics approach in the analysis of the 
micro and nanostructures, logical and reasonable 
modifications that take into consideration the scale 
effect should be proposed. For this purpose, several 
theoretical models have been suggested, such as the 
strain gradient theory, the modified coupled stress 
theory and the nonlocal elasticity theory which will be 
utilized in this study to analyze the free vibration 
problem of nonlocal annular and circular Mindlin 
plates. 

The nonlocal elasticity theory was introduced by 
Eringen (1983) accounts for the small-scale effects 
arising at the nano scale level by assuming that the 
stress at a point is a function of the strains at all points 
in the domain. Many researchers applied the nonlocal 
elasticity theory to study the free vibration, buckling, 
deflection and dynamic problems of micro and 
nanostructures. For example, Reddy (2007) obtained 
analytical solutions for the bending, buckling and 
vibration problems for simply supported Euler, 
Timoshenko, Reddy and Levinson beams using 
Eringen's nonlocal theory. Murmu and Adhikari 
(2010a) studied the nonlocal transverse in and out-of-
phase vibrations of double nanobeam systems, in which 
explicit closed-form expressions for natural frequencies 
were derived.  

Shakouri et al. (2011) applied the Galerkin 
approach to study the free vibration problem of 
nonlocal Kirchhoff plates with different boundary 
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conditions; this study showed that the nonlocal 
parameter and Poisson's ratio have significant effects on 
the vibration. Wang et al. (2007) applied the Hamilton's 
principle, Eringen's nonlocal elasticity theory and 
Timoshenko beam theory to analyze the free vibration 
problem of the micro/nanobeams; it was concluded that 
the effects of small scale, rotary inertia and transverse 
shear deformation are important on the vibration 
behavior of short, stubby micro/nanobeams. Moreover, 
Murmu and Adhikari (2010b) applied the differential 
quadrature method and the nonlocal elasticity theory to 
study the free vibration of a rotating carbon nanotube 
modeled as an Euler-Bernoulli beam. It was concluded 
that the vibration is significantly influenced by the 
angular velocity, preload and the nonlocal parameter.  

Lu et al. (2006) derived the dispersion relation for 
a harmonic flexural wave propagation in an Euler-
Bernoulli beam, as well as the frequency equations and 
modal shape functions for beam with different 
boundary conditions based on Eringen's nonlocal 
elasticity theory. Murmu and Pradhan (2009b) 
implemented the nonlocal elasticity theory to study the 
vibration response of single graphene sheets embedded 
in an elastic medium modeled as Winkler and Pasternak 
foundations, where the differential quadrature method 
was employed to numerically solve for the fundamental 
natural frequencies of plates with clamped and simply 
supported edges. In a similar manner, Murmu and 
Pradhan (2009b) applied the nonlocal elasticity theory 
to investigate the free vibration problem of nanoplates 
under uniaxially pre stressed conditions by utilizing the 
differential quadrature method to obtain the 
fundamental natural frequencies for simply supported 
and clamped nanoplates. In this study, it was observed 
that buckling occurs at smaller critical compressive 
load compared to the classical plate theory.  

Gürses et al. (2012) studied the free vibration 
analysis of thin nano-sized annular sector plates 
utilizing Eringen's nonlocal elasticity theory to 
formulate the equation of motion. The discrete singular 
convolution method was applied after transforming the 
irregular physical domain into a rectangular domain by 
using geometric coordinate transformation. This study 
showed that the effects of the nonlocal parameter is 
significant in the vibration analysis. Hashemi et al. 
(2013a) applied an exact analytical approach along with 
Eringen's theory to study the free vibration problem of 
thick circular and annular functionally graded Mindlin 
nanoplates with different combinations of boundary 
conditions. The effects of the plate radius, material 
properties which vary through the material according to 
a power-law distribution and the nonlocal parameter on 
the natural frequencies were examined. In another 
study, Hashemi et al. (2013b) introduced potential 
functions and used the separation of variables method 
to obtain closed-form solutions for non-local 
rectangular Mindlin plates with Levy-type boundary 

conditions in which the effects of the nonlocal 
parameter, thickness to length ratio and aspect ratio on 
the natural frequencies were investigated.  

Furthermore, Ansari et al. (2010) applied the 
generalized differential quadrature method, Eringen's 
nonlocal elasticity theory and the molecular dynamics 
simulations to carry out the vibration analysis of single 
layered graphene sheets modeled as rectangular 
Mindlin plates. Additionally, the appropriate values of 
the nonlocal parameter suitable for each boundary 
condition were evaluated. Duan and Wang (2007) 
obtained exact solutions for the axisymmetric bending 
of micro and nano circular plates under general loading 
using a nonlocal plate theory. It was concluded that 
nonlocal parameter has a significant effect on the 
deflections, moments and bending stiffness.  

The main objective of this article is to study the 
axisymmetric free vibration problem of non-local 
annular and circular Mindlin plates. For this purpose, 
Erigen's nonlocal elasticity theory along with 
Hamilton's principle will be applied and the Chebyshev 
collocation method (as a numerical technique) will be 
used to discretize the problem and to obtain the 
algebraic eigenvalue problem and hence, solving for the 
natural frequencies. It is worthwhile to mention that the 
Chebyshev collocation method was successfully 
employed to carry out the free vibration analysis of 
local continuous systems with different shapes and 
geometries in previous studies (Sari et al., 2011; Sari 
and Butcher, 2011a, b, 2012).  
 

MATERIALS AND METHODS 
 
Chebyshev spectral collocation: Gauss-Chebyshev-
Lobatto or Chebyshev extreme points are the points in 
the interval (-1, 1) defined by: 
 

  NjNjx j ,,1,0  ,/ cos                  (1) 

 
Chebyshev points are the projections on (-1, 1) of 

equally spaced points on the upper half of the unit circle 
and they are numbered from right to left as shown in 
Fig. 1 (Trefethen, 2000). For the set of N+1 Chebyshev 
points we have an (N+1) X (N+1) Chebyshev 
differentiation matrix DN. The Chebyshev 
differentiation matrix is obtained by interpolating a 
Lagrange polynomial of degree N at each Chebyshev 
point, differentiating the polynomial and then finding 
the derivative of the polynomial at each Chebyshev 
point. The entries of this matrix are: 
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Fig. 1: Chebyshev points 
 

When solving ODEs or PDEs by the Chebyshev 
collocation method, the first derivative is represented 
by D1 = DN, the second derivative by D2 = (D1)2 = 
(DN)2 and so on. 
 
Nonlocal theory: In local elasticity theory, the stress at 
a reference point in a body depends on the strain at the 
same point. On the other hand, In the non-local 
elasticity theory pioneered by Eringen (1983), the stress 
at a point in a linear, homogeneous, isotropic, elastic 
domain is related to the stress field at all points in the 
domain. Eringen's theory is based on the atomic theory 
of lattice dynamics and experimental results on phonon 
scattering and dispersion (Eringen, 1983; Gürses et al., 
2012). For non-local linear elastic solids, the stress 
tensor tij is defined by: 
 

     xdVxxxt ij

V

ij      
                             (3) 

 
where, x is a reference point in the elastic domain, 
′ݔ|ሺ	ߙ െ  ሻ is the non-local kernel attenuation function|ݔ
which introduces the nonlocal effects at the reference 
point x produced by the local stress ߪ௜௝ at any point x' 
and |ݔ′ െ |ݔ

 
is the distance in Euclidean form.  

In order to simplify Eq. (1), Eringen introduced a 
linear differential operator ς, defined by ς =   22

01  le  

in which e0 is a material constant estimated by 
experiments or other models and theories, such that the 
non-local theory relations could result in approximate 
solutions to those obtained by atomic theory. The value 
of e0 was taken to be 0.39 in Eringen's analysis. 
Moreover, the constant l represents the internal 
characteristic length which is of the same order of the 
external length. The Laplace operator 2  is defined in 
the polar coordinates as: 
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Since the axisymmetric vibration of the annular 

non-local Mindlin plates will be studied, all derivatives 
with respect to the θ axis will be zero and hence, the 
Laplace operator is simplified as: 
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According to Eringen, the integral constitutive 

relation Eq. (1) could be simplified and rewritten as: 
  

   ijijtle    1 22
0

                                            (5) 

 
Due to its simple form, Eq. (3) has been 

extensively employed by many researchers in applying 
the non-local theory to study and analyze the vibration 
and mechanics of micro and nanostructures.  

From Eq. (3) and utilizing Hook's law, the 
constitutive relations can be expressed as: 
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where,  
r  and εr : The normal stress and normal strain in the 

radial direction r 
θ  and εθ : The normal stress and normal strain in the 

circumferential direction θ 
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E : Young's modulus 
v : The Poisson's ratio 
 

In the case of axisymmetric vibration, the normal 
strains εr and εθ 

are defined as: 
 

r
z

r
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     ,                (8) 

 
where, the z axis is shown in Fig. 2 and ψ is the slope 
rotation in the r-z plane at z = 0. 

Accordingly, the resultant moments and shear are 
expressed as: 
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where,  
,ݎሺ	ഥݓ   ሻ : The transverse deflectionݐ
D = Eh3/12 (1-ν2) : The flexural rigidity 
 

h : The thickness  
κ : The shear correction factor  
G : The shear modulus  

 
The resultant moments and shear are defined in 

terms of the normal stresses r and θ as: 
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Based on Hamilton’s principle, the first order shear 

deformation theory FSDT and Eringen's non-local 
constitutive relations, the following equilibrium 
equations of the free vibration are obtained for an 
annular axisymmetric isotropic non-local Mindlin plate 
with a uniform thickness shown in Fig. 2: 
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where, 
t  = The time 
ρ  = The density of plate material 
 
Substituting Eq. (9)-(12) into Eq. (13) yields: 

 
 
Fig. 2: The thick annular plate under consideration 
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Note that the governing Eq. (14) reduce to that of the local Annular Mindlin plate model when the characteristic 

length l is set to zero (Han and Liew, 1999). 
For convenience, the following non-dimensional parameters are introduced: 
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And assuming harmonic solutions in time as: 
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The left hand side of each equation is written in terms of Chebyshev collocation matrices and the Kronecker 

product operator as: 
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The right hand side of each equation is written as:
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where, diag(R) and diag(R2) are diagonal M X M matrices with values of Ri and Ri

2 on the main diagonals, 
respectively and M = N+1 and i = 2, 3,…, N. The dimensions of GE1, GE2 RH1 and RH2 are M X 2M. Equation 
(16) is written as: 
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It is worthwhile to mention that for the annular plates, the Chebyshev points are shifted to the range [b/a, 1], 

while for the circular plates these points are shifted to the range [0, 1] as the solid part of the annulus begins at r = b 
or R = b/a. This different range of the points in both cases leads to different Chebyshev differentiation matrices 
since the entries of these matrices depend on the distribution of the points.  
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Boundary conditions: In order to obtain the natural frequencies of the circular annular non-local Mindlin plate, the 
boundary conditions at r = b and at r = a should be applied. In the present study, two types of boundary conditions, 
i.e., simply Supported (S) and Clamped (C) are taken into consideration. For a clamped edge, both displacements W 
and Ψ equal zero; whereas for a simply supported edge, the transverse displacement W and Mr equal zero. 
In terms of Chebyshev collocation method, these conditions are applied at the inner edge (r = b) as:  
Clamped: W1 = 0        00110  TU : 
 

      0010101  TU                                                                                                               (18) 
 
where, [1… 0] is a 1 X M vector with the first entry equals one and other entries are zero since it corresponds to the 
boundary r = b. The displacement vector [U] is defined as: 
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Simply supported: 
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             00101*:,11010  T
R UDM 




             

(19) 

 
At the outer edge (r = a), the conditions for the axisymmetric vibration are applied in a similar way as: 
Clamped:  
 

WM = 0        01010  TU  
 

      010010  T
M U                                                                                                              (20) 

 
where, [0… 1] is a 1 X M vector with the last entry equals one and other entries are zero since it corresponds to the 
boundary r = a.  
Simply supported:  
 

WM = 0        01010  TU  
 

             01001*:,1010  T
R UendDM                                                 (21) 

 
where, D1 (1, :) is defined as: 
 

          MDDDDD ,113,112,111,11:,11   
 
and D1 (end, :) is defined as:  
 

          MMDMDMDMDendD ,13,12,11,1:,1   
 
The boundary conditions considered here are the same for both local and nonlocal Mindlin plate models as the 

contribution of scale effect gets nullified at the ends as the displacements are zero. After applying the boundary 
conditions at R = β and R = 1, the system is written as: 
  

   
   

 
 

   
   

 
 

































I

B

I

B

IIIB

BIBB

U

U

QU

U

SS

SS

0

004                                                                                                        (22) 

 
In this case, SBB is a 4 X 4 matrix, SBI is a 4 X (2M-4) matrix, SIB is a (2M-4) X 4 matrix, SII is a (2M-4) X (2M-4) 

matrix and UI and UB are the displacements vectors at the interior and boundary points, respectively. The frequency 
parameter λ is defined as: 
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D

h
a

 424   and 
 22

22

1 





a

E

 
 
From the equations in matrix vector form, we 

obtain the final eigenvalue problem as in Eq. (22). 
Writing the coupled governing equations and the 
boundary conditions in matrix vector form with the use 
of the Kronecker product operator makes the procedure 
simpler in implementation.  

For the case of axisymmetric vibration of circular 
non-local Mindlin plates, the governing equations are 
the same; whereas the Chebyshev points in this case are 
shifted to the range [0, 1] unlike in the annular plate 
where these points are in the range [b/a, 1]. 
Furthermore, the boundary conditions at R = 0 are: Ψ 
and QR equal zero, while the edge R = 1 is considered to 
be either clamped or simply supported. It is worthwhile 
to mention that different range of the points in both 
cases leads to different Chebyshev differentiation 
matrices as the entries of these matrices depend on the 
distribution of the points.  
 

RESULTS AND DISCUSSION 
 

Dimensionless frequencies are calculated for 
annular and circular non-local Mindlin plates with 
clamped and simply supported boundary conditions, 
where N = 16 is used in the computations to attain 
convergence for the first six dimensionless frequencies. 
The  convergence  analysis  for  a  SS non-local annular  

plates, with b/a = 0.3, h/a = 0.15 and μ = 0.8 are shown 
in Table 1, where the minimum number of points used 
in the computations is N = 6 and these points were 
increased till the results are converged up to four 
decimal places. For all cases considered in the present 
study, the shear correction factor is taken as κ = π2/12 
and the Poisson’s ratio as ν = 0.3.  

The variation of the fundamental frequency 
parameter with the inner to outer radius b/a of a SS and 
CC annular Mindlin plates with h/a = 0.1 at different 
values of the dimensionless non-local parameter μ is 
presented in Fig. 3 and 4, respectively. It is shown that 
as the ratio b/a increases the frequency increases (Han 
and Liew, 1999). Further, it is observed that the natural 
frequency decreases by increasing the nonlocal 
parameter due to the decrease in the stiffness of the 
micro/nano-plate. In Eringen nonlocal elasticity theory, 
it may be viewed that atoms are bonded by elastic 
springs with finite value; while the classical local model 
assumes that the stiffness of springs have a value of 
infinity (Wang et al., 2007; Gürses et al., 2012). 
Moreover, it is noticed that as the non-local parameter μ 
increases, the frequency increases with a smaller rate as 
the ratio b/a increases. As an example, for the SS 
annular plates with μ = 0.1, the fundamental frequency 
λ1 increases from 13.1342 at b/a = 0.1 to 31.6491 at   
b/a = 0.5 with an increasing rate of about 141%; while 
for μ = 0.8, the fundamental frequency λ1 increases 
from 4.7564 at b/a = 0.1 to 7.3156 at b/a = 0.5 with an 
increasing rate of about 54%. For the CC annular plate

 
Table 1: Convergence analysis for SS non-local annular mindlin plate with b/a = 0.3, h/a = 0.15, μ = 0.8 

 N = 6 N = 8 N = 10 N = 12 N = 14 N = 16 N = 18
λ1 5.2392 5.2377 5.2377 5.2377 5.2377 5.2377 5.2377
λ2 8.8302 8.8412 8.8398 8.8399 8.8399 8.8399 8.8399
λ3 10.9871 11.0063 10.9836 10.9850 10.9849 10.9849 10.9849
λ4 13.7957 12.3790 12.3167 12.3108 12.3109 12.3109 12.3109
λ5 15.4661 13.3532 13.2077 13.1514 13.1558 13.1553 13.1553
λ6 37.2670 14.7550 13.8711 13.7361 13.7185 13.7184 13.7184

 

 
 
Fig. 3: Variation of the fundamental frequency parameter λ1 with b/a of a SS non-local annular mindlin plate (h/a = 0.1) 
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Fig. 4: Variation of the fundamental frequency parameter λ1 with b/a of a CC non-local annular mindlin plate (h/a = 0.1) 
 

 
 
Fig. 5: Variation of the second frequency parameter λ2 with b/a of a SS non-local annular mindlin plate (h/a = 0.1) 

 

 
 
Fig. 6: Variation of the second frequency parameter λ2 with b/a of a CC non-local annular mindlin plate (h/a = 0.1) 



 
 

Res. J. Appl. Sci. Eng. Technol., 9(8): 561-571, 2015 
 

569 

with μ = 0.1, the fundamental frequency λ1 increases 
from 23.1171 at b/a = 0.1 to 58.1934 at b/a = 0.5 with 
an increasing rate of about 152%; while for μ = 0.8, the 
fundamental frequency λ1 increases from 7.7659 at    
b/a = 0.1 to 12.4454 at b/a = 0.5 with an increasing rate 
of about 60%. 

Similar observations may be concluded from Fig. 5 
and 6 that show the variations of the second 
dimensionless frequencies with the inner to outer radius 
b/a  of  a SS  and  CC  annular  Mindlin  plates  with   

h/a = 0.1 at different values of the dimensionless non-
local parameter μ. It is seen that the second natural 
frequencies are more influenced by the small scale 
effect which can be obviously noticed from the 
differences between the curves for μ = 0 and μ = 0.1 in 
Fig. 3 and 5 for the SS case and between the curves for 
μ = 0 and μ = 0.1 in Fig. 4 and 6 for the CC case. 

The variation of the fundamental frequency 
parameter with the ratio h/a of a CC non-local annular 
Mindlin plate with b/a = 0.3 is shown in Fig. 7. It is

 

 
 
Fig. 7: Variation of the fundamental frequency parameter λ1 with h/a of a CC non-local annular mindlin plate (b/a = 0.3) 
 
Table 2: The first six frequency parameters of CC non-local annular mindlin plates with b/a = 0.3, h/a = 0.15 

 μ 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
λ1 34.5294 31.1961 24.9421 19.6324 15.8283 13.1349 11.1756 9.7029 8.5621
λ2 77.7863 57.3769 37.1157 26.4060 20.2968 16.4284 13.7788 11.8567 10.4011
λ3 128.7380 77.0506 45.2726 31.4442 23.9858 19.3547 16.2090 13.9364 12.2194
λ4 182.9789 89.8115 49.7184 33.8884 25.6244 20.5788 17.1854 14.7493 12.9164
λ5 239.3074 98.4831 52.9288 35.9042 27.1248 21.7814 18.1907 15.6134 13.6741
λ6 294.4169 104.3338 54.8905 36.9886 27.8513 22.3228 18.6215 15.9713 13.9806
 
Table 3: The first six frequency parameters of CS non-local annular mindlin plates with b/a = 0.3, h/a = 0.15 

 μ 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
λ1 24.9426 22.6162 18.2231 14.4483 11.7090 9.7498 8.3141 7.2294 6.3862 
λ2 69.6681 51.8370 33.9405 24.3365 18.7913 15.2510 12.8129 11.0378 9.6900 
λ3 122.6923 73.4614 43.0503 29.7936 22.6684 18.2620 15.2781 13.1271 11.5044
λ4 179.3020 87.7813 48.5780 33.1274 25.0618 20.1345 16.8187 14.4372 12.6447
λ5 237.2397 97.1989 52.0769 35.2382 26.5781 21.3209 17.7947 15.2671 13.3670
λ6 292.9046 103.5606 54.4192 36.6637 27.6081 22.1297 18.4617 15.8351 13.8619
 
Table 4: The first six frequency parameters of SS non-local annular mindlin plates with b/a = 0.3, h/a = 0.15 

 μ 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
λ1 19.2959 17.6440 14.4443 11.6016 9.4820 7.9377 6.7923 5.9198 5.2377
λ2 63.6043 47.4485 31.0961 22.2728 17.1782 13.9302 11.6966 10.0721 8.8399
λ3 118.4722 70.7583 41.3445 28.5486 21.6901 17.4584 14.5975 12.5376 10.9849
λ4 176.9018 86.1921 47.5392 32.3506 24.4434 19.6228 16.3834 14.0591 12.3109
λ5 236.2337 96.2536 51.4365 34.7523 26.1888 20.9977 17.5193 15.0275 13.1553
λ6 289.0267 102.9765 54.0059 36.3431 27.3482 21.9125 18.2758 15.6730 13.7184
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Table 5: The first six frequency parameters of clamped non-local circular mindlin plates  
  Axisymmetric vibration mode number 

------------------------------------------------------------------------------------------------------------------------------------------
μ           h/a 1 2 3 4 5 6 
0  0.100 9.9408 36.4787 75.6643 123.3195 176.4146 232.9659
  0.150 9.6286 33.3934 65.5507 102.0891 140.9321 180.9852
  0.200 9.2400 30.2107 56.6823 85.5714 115.5549 145.9428
0.1  0.100 9.6161 31.6709 56.8423 79.5243 98.1943 113.0861
  0.150 9.3175 29.0687 49.4716 66.1621 78.7687 88.1076 
  0.200 8.9454 26.3648 42.9225 55.6057 64.6894 71.1295 
0.2  0.100 8.8012 24.0185 37.4530 48.0005 56.1329 62.4317 
  0.150 8.5347 22.1136 32.6962 40.0212 45.0845 48.6706 
  0.200 8.2019 20.1216 28.4416 33.6805 37.0390 39.2838 
0.4  0.100 6.8390 14.6684 20.8132 25.5858 29.2861 32.1744 
  0.150 6.6408 13.5292 18.1877 21.3444 23.5289 25.0864 
  0.200 6.3927 12.3364 15.8383 17.9713 19.3325 20.2467 
0.8  0.100 4.2412 7.8724 10.7674 13.0494 14.8344 16.2348 
  0.150 4.1212 7.2617 9.4093 10.8862 11.9185 12.6586 
  0.200 3.9711 6.6231 8.1950 9.1666 9.7934 10.2167 
 
Table 6: The first six frequency parameters of simply supported non-local circular mindlin plates  

  Axisymmetric vibration mode number 
------------------------------------------------------------------------------------------------------------------------------------------

μ        h/a 1 2 3 4 5 6
0 0.100 8.8679 36.0407 76.6756 126.2742 181.4644 239.9853
 0.150 8.7095 33.6744 67.8274 106.3971 146.8346 187.7949
 0.200 8.5051 31.1106 59.6450 90.0593 120.5651 149.6279
0.1 0.100 8.6374 31.3010 57.1736 80.2976 99.1666 114.1166
 0.150 8.4795 29.1904 50.4298 67.4625 80.0975 89.3279
 0.200 8.2761 26.9207 44.2729 57.1080 66.0530 72.2725
0.2 0.100 8.0378 23.7620 37.4886 48.1594 56.3460 62.6573
 0.150 7.8826 22.0964 32.9646 40.3503 45.4114 48.9630
 0.200 7.6833 20.3203 28.8658 34.0895 37.3955 39.5743 
0.4 0.100 6.4725 14.5454 20.7957 25.5910 29.3254 32.2066
 0.150 6.3322 13.4761 18.2360 21.3943 23.5980 25.1394
 0.200 6.1531 12.3466 15.9289 18.0449 19.4107 20.3046
0.8 0.100 4.1569 7.8343 10.7683 13.0384 14.8484 16.2320
 0.150 4.0560 7.2355 9.4265 10.8846 11.9374 12.6620
 0.200 3.9276 6.6086 8.2204 9.1713 9.8121 10.2230

 
seen that as the frequency decreases as the ratio h/a 
increases (Han and Liew, 1999) and the decrease rate is 
higher at smaller values of the non-local scale effect. 
The variations of the first six frequency parameters with 
the non-local parameter for CC, CS and SS non-local 
annular Mindlin plates at b/a = 0.3, h/a = 0.15 are 
presented in Table 2 to 4. As in the annular plates, it is 
seen that as the non-local scale parameter increases, the 
frequency parameters decrease and this effect is more 
significant for higher modes. Moreover, it is observed 
that the frequency parameters are more affected by the 
nonlocal parameter when the annular plate has clamped 
boundary conditions as the structure becomes stiffer 
and more rigid. Additionally, at higher values of the 
non-local parameter, the frequency parameters get 
closer to each other and it is expected that the frequency 
parameters will no longer increase as the mode number 
increases at values of μ greater than 1.0.  

The variations of the first six frequency parameters 
with the non-local parameter for clamped and simply 
supported non-local circular Mindlin plates with 
different values of the thickness to radius ratio h/a are 
presented in Table 5 and 6, respectively. It is observed 
that as the ratio h/a and the non-local parameter μ 
increase, the frequency parameters decrease. As in the 

non-local annular plates, the frequency parameters are 
more effected by the nonlocal parameter when the 
circular plate has clamped boundary conditions and at 
higher values of the non-local parameter, the frequency 
parameters get closer to each other. 
 

CONCLUSION 
 

The free vibration analysis of non-local annular 
and circular Mindlin plates was investigated and the 
nonlocal elasticity theory is employed to derive the 
governing equations of motion, where the Chebyshev 
spectral collocation method was utilized to solve for the 
frequency parameters. Convergence analysis was 
carried out to determine the sufficient number of grid 
points to be used in the computations. The effects of the 
nonlocal scale parameter, the inner to outer radius ratio 
(for annular plates), the thickness to the outer radius 
ratio and the boundary conditions on the frequency 
parameters are examined. It was found that the nonlocal 
scale parameter has a significant effect especially for 
higher frequency modes. Therefore, the scale parameter 
should be taken into account when modeling 
micro/nano annular and circular plates. Moreover, it 
was observed that the effect of nonlocal parameter on 
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the frequencies of plates with clamped boundary 
conditions is more than that on plates with simply 
supported edges. In addition, it was found that the 
frequencies get closer to each other at higher values of 
the nonlocal scale parameter. The results presented 
herein may be useful for scientists working on and 
designing micro/nano annular and circular plates. For 
future work, it is suggested to study the free vibration 
analysis of nonlocal annular and circular Mindlin plates 
resting on elastic foundation, due to the fact that 
graphene sheets and circular nanotubes are found 
embedded in elastic medium, which will make the 
study more realistic as it has an industrial application. 
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