
Research Journal of Applied Sciences, Engineering and Technology 9(11): 922-925, 2015 
DOI:10.19026/rjaset.9.2584 
ISSN: 2040-7459; e-ISSN: 2040-7467 
© 2015 Maxwell Scientific Publication Corp. 

Submitted:  September  13,  2014 Accepted:  September  20,  2014 Published: April 15, 2015 

 

Corresponding Author: M.A. Ofosu, Department of Mathematics, Kwame Nkrumah University of Science and Technology, 

Kumasi, Ghana 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

922 

 

Research Article 
Volume Constraint Model and Algorithm for the 0-1 Knapsack Problem 

 
1
M.A. Ofosu, 

1
S.K. Amponsah and 

2
F. Appau-Yeboah 

1
Department of Mathematics, Kwame Nkrumah University of Science and Technology, 

2
Department of Mathematics and Statistics, Kumasi Polytechnic, Kumasi, Ghana 

 

Abstract: Today’s economic environment has highlighted the importance of properly optimizing every 
organization’s asset including space and facilities portfolio. Reducing space cost by using space more efficiently can 
release funds for other more important activities according to the National Audit Office (NAO) space management 
in higher education. Utilization rate is a function of a frequency rate and an occupancy rate. The frequency rate 
measures the proportion of time that space is used compared to its capacity. In this study, we have proposed a new 
model formulation and algorithm design for the 0-1 knapsack problem. Our proposed algorithm considers volume or 
space occupancy of the items as paramount, since no matter how profitable the item is to the camper if the volume 
or the size is bigger than that of the volume of the knapsack since every knapsack also has a volume, there would be 
no need to force it into the knapsack. The most interesting thing about the algorithm is that, it eliminates symmetric 
branching tree and the lazy sorting used by most algorithms in the literature. Computational experiments provided 
also show that our proposed algorithm can be among the most efficient algorithms available in the literature. 
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INTRODUCTION 

 
The classical Knapsack Problem is the problem of 

choosing a subset of the n items such that the 
corresponding profit sum is maximized without having 
the weight sum to exceed the capacity c. 

The general problem is formulated as integer linear 
programming model: 

Maximize � ����
�
���  

Subject to � ����
�
���  ≤ c 

�� ∈{0, 1}N  
 
where, �� is a binary variable equalling 1 if item j 

should be included in the knapsack and 0 otherwise, 
thus a single constraint model. 

From practical experience it is known that many 
KP instances of considerable size can be solved within 
reasonable time by exact solution methods. This fact is 
due to several algorithmic refinements which have 
emerged over the last two decades. This include 
advance dynamic programming recursions, the exact 
methods, heuristics method, the hybrid methods, the 
concept of solving a core and the separation of cover 
inequalities to tighten the formulation. 

 
LITERATURE REVIEW 

 
Sahni (1975) presented the first approximation 

scheme for KP which made use of a greedy-type 

procedure which finds a heuristic solution by filling in 

order of decreasing 
�

�


 ratio, that part of c which is left 

vacant after the items of a given set M have been put 
into the knapsack. This gave a time complexity of O (n) 
for the procedure GS and the number of times it is 

executed is O (��). 
Ibarra and Kim (1975) obtained a fully polynomial-

time approximation scheme, i.e., a parametric algorithm 
which allowed one to obtain any worst-case relative 
error (note that imposing � is equivalent to imposing 
(�) in polynomial-time and space and such that the time 
and space complexities grow polynomially also with 
the inverse of the worst-case relative error �. The basic 
ideas in the Ibara-Kim algorithm are: 
 

• To separate items according to profits into a class 
of large items and one of small items 

• To solve the problem for the large items only, with 
profits scaled by a suitable scale factor �, through 
dynamic programming. The dynamic programming 
list is stored in a table T of length: 

�(�
�)�� + 1 

 
T (k) = undefined or is of the form  (L  (k),  P  (k),  

w  (k)),  where  L  (k)  is  a  subset  of  {1, ...,  n},  P  

(k) = � ��� ∈�(�) , w(k) = � ��� ∈�(�)  and k = � ���� ∈�(�)  

with ��� = �
�

�  . 
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Balas and Zemel (1980) developed a heuristics 
method for the KP. The author’s heuristics was a simple 
exchange algorithm for the core problem of KP, which 
successfully removes an item i and replaces it by one or 
two other items j, b in order to obtain a filled knapsack. 
In spite of the simple structure, Balas and Zemel (1980) 
were able to prove some interesting properties on the 
quality of the solution found by their heuristic. The 
authors procedure assumed that the core items are 
indexed by 1, ..., m and that the capacity of the core 
problem is !" . The break item in the core is denoted by 
b and the residual capacity by filling the knapsack with 

items j< b is r = !" – � ��
%&�
��� . 

Early papers which specialized on Dynamic 

Programming for the 0-1 Knapsack Problem includes 

Bellman (1957), Dantzig (1957) and Bellman and 

Dreyfus (1962). The idea is to first fill a small knapsack 

optimally and then, using this information, fill larger a 

knapsack optimally. This process is repeated until the 

original problem is solved completely. Some 

computational improvements were proposed by Toth 

(1980).  

In his award winning PhD-thesis, Pisinger (1995) 

devised a dynamic programming recursion, which, 

although the worst-case time complexity was O (bn) as 

for the Bellman recursion, solves most relatively large 

problem instances without enumerating too many 

variables. The algorithm starts from the break solution 

and at each stage either inserts or removes an item. 

Strong upper bounds are used to limit the number states 

in the recursion. The enumeration process terminates 

due to some bounding tests, in which case it is possible 

to prove that the current incumbent solution is optimal. 

Martello et al. (1999) studied a model that 

incorporated cardinality constraints into a very efficient 

Dynamic Programming algorithm. Although the worst-

case time complexity of their algorithm was O (bn), 

they solved most instances quite quickly due to the tight 

bounds produced by the cardinality constraints. 
Kolesar (1967) presented the first branch-and-

bound approach to the exact solution of KP. The 
authors algorithm consists of a highest-first binary 
branching scheme which:  

 

• At each node, we select the not-yet-fixed item j 

having the maximum profit per unit weight and 

generate two descendent nodes by fixing ��, 
respectively to 1 and 0.  

• We continue the search from the feasible node for 
which the value of upper bound '� is a maximum. 
This however required a large computer memory 
and processing time. 
 
Due to the large computer memory and time 

requirement of Kolesar’s algorithm Greenberg and 
Hegerich (1970) presented a method which greatly 
reduced Kolesar approach, differing from that of the 
Kolesar in two main respects, namely:  

• At each node, the continuous relaxation of the 
induced sub-problem is solved and the 
corresponding critical item (" is selected to generate 
the two descendent nodes (by imposing �)" = 0 and 
�)" = 1).  

• The search continues from the node associated with 
the exclusion of item (" (condition �)" = 0). When 
the continuous relaxation has an all-integer 
solution, the search is resumed from the last node 
generated by imposing �)" = 1, i.e., the algorithm is 
of depth-first type. 
 
Horowitz and Sahni (1974) and independently, 

Ahrens and Finke (1975) derived from the previous 
scheme a depth-first algorithm in which:  

 

• Selection of the branching variable �� is the same 

as that of Kolesar.  

• The search continues from the node associated with 
the insertion of item j (condition �� = 1), i.e., 
following a greedy strategy.  
 

However the algorithm presented by Horowitz-Sahni 
was the most effective, structured and easy to 
implement and has constituted the basis for several 
improvements. The authors underlying assumption is 
that, the items are sorted as in ascending order of profit 
to weight ratio. A forward move consists of inserting 
the largest possible set of new consecutive items into 
the current solution. A backtracking move consists of 
removing the last inserted item from the current 
solution. Whenever a forward move is exhausted, the 
upper bound '� corresponding to the current solution is 
computed and compared with the best solution so far, in 
order to check whether further forward moves could 
lead to a better solution. If so, a new forward move is 
performed; otherwise a backtracking follows. When the 
last item has been considered, the current solution is 
complete and possible updating of the best solution so 
far occurs. The algorithm stops when no further 
backtracking can be performed. 

As an improvement upon Horowitz-Sahni 
algorithm, Martello and Toth (1977a, b) presented a 
method which differs from that of Horowitz and Sahni 
in the following respect: 
 

• Upper bound '� was used. 
• The forward move associated with the solution of 

the *+, item is split into two phases, namely: 
building of a new current solution and saving of the 
current solution. In the first phase, the largest set 
-� of consecutive items which can be inserted into 

the current solution starting from the *+,  is defined 
and the upper bound corresponding to the insertion 

of the *+,  item is computed. If this bound is less 
than or equal to the value of the best solution so 
far, a backtracking move immediately follows. If it 
is greater, the second phase, that is insertion of the 
items of set -� into the current solution, is 
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performed only if the value of such a new solution 
does not represent the maximum which can be 

obtained by inserting the *+, item. Otherwise, the 
best solution so far is changed, but the current 
solution is not neglected, hence useless 
backtracking on the items in -� is avoided. 

• A particular formal procedure, based on dominance 

criteria, is performed whenever, before a 

backtracking move on the .+, item, the residual 

capacity !/ does not allow insertion into the current 
solution of any item following the .+,. The 

procedure was based on the following 

consideration: the current solution could be 

improved only if the .+, item is replaced by an item 

having greater profits and a weight small enough to 

allow its insertion, or by at least two items having 

global weight not greater than �0+!/. By this 
approach it is generally possible to eliminate most 

of the useless nodes generated at the lowest level of 

the decision tree. 

  

The upper bounds associated with the nodes of the 

decision tree are computed through a parametric 

technique based on the storing of information related to 

the current solution. Supposing the current solution has 

been built by inserting all the items from the *+, to the 
1+,, then, when performing a backtracking on one of 

these items, (say the .+,, j≤i<r ), if no insertion 

occurred for the items preceding the *+,, it is possible to 
insert at least items i+1, ..., r into the new current 

solution. To this end, we store in 1"0, �"0 and �20 the 
quantities r+1 ; � ��

3
��0  and � ��

3
��0  respectively for i = 

j, ..., r and in 1" the value r-1 (used for subsequent 
updating). Following are detailed description of the 

algorithm.  

 

METHODOLOGY 

 

Mathematical formulation of our proposed 

problem: The classical Knapsack Problem is the 

problem of choosing a subset of the n items such that 

the corresponding profit sum is maximized without 

having the weight sum to exceed the capacity c. The 

general problem is formulated as integer linear 

programming model: 
 

Maximize � ����
�
���  

Subject to � ����
�
���  ≤ c 

�� ∈{0, 1}N  
 
where, �� is a binary variable equalling 1 if item j 

should be included in the knapsack and 0 otherwise, 
thus a single constraint model. 

However in real cases, the knapsacks as well as the 
items to fill the knapsacks have volumes or sizes and 
hence consideration should be given to the volume 
constraints when modelling and developing an 

algorithm to solve the knapsack problem, with the 
mathematical formulation: 

 
Maximize � ��

�
��� ��   

Subject to � �0�
�
��� �� ≤ 50 , i = 1, ..., m   

� 60�
�
��� �� ≤ 70 , i = 1, ..., m 

�� ≥0 and integer, j = 1, .., n                                (1) 

 
where, �� is a binary decision variable equalling 1 if 
item j should be included in the knapsack and 0 
otherwise, thus a two constraint model. 
 
Algorithm: Given the knapsack problem with a total of 

N items, let the number of items type be represented by 

n mutually exclusive subsets of N, thus n∈N. Let the n 
subsets also have members �9 that represent the 
number of items that can be taken from each subset or 

not taken from each subset, up to the total number of 

items in each n subset and volume 69 of each item. The 

input to this algorithm is the feasible region of a binary 

integer program {x∈ {0, 1}
n
: Ax≤b}, mutually 

exclusive n sets that represents the number of item 

types of the binary integer program, the positive 

integers of the weights (�0), the profits (�0), the (60) 
volume and the knapsack capacity (b). The basic idea of 

the algorithm is to find non-cover optimum solutions 

for :∗, <=, �=, 7>, the number of items from the various 

n sets item types that will be selected to obtain the 

optimum solution to the optimization 0-1 knapsack 

problem ��.  
 

Initialization: 
S: = b; V; 

L: = 0, @A�BCD: = 0, @A�BED: = 0, F�: = 0; 
k: = n 
x (k): = {0, ...., n} 
 
Main step: 
@A��G  = 1 
For each subset item .) ∈ �9 = 0 to @A��G    

  Solve the following 

         L = .) ∈ �9: � .)70H
�G
0H��  

         <=CD  = .) ∈ �9: � .)<0H
�G
0H��   

7=CD  = .) ∈ �9: � .)70H
�G
0H��  

 
Check for feasibility: 
    While <=CD < S, 7=CD  <  IB and @A�BCD < L  
           @A�BCD = L; F� =  <=CD; @A�BED  = 7=CD   
        For j = 1, k 
                   x (j) = {.) } 
               End For 
     End While  
End For 
 
Termination: 
Output: x (j), @A�BCD , @A�BED  and F�  as the solutions.
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Table 1: Computational average time/sec for weakly correlated data instance 

Item size  Optimal value Optimal weight Optimal volume Item selected Time 

5 45 26 14 (1, 1, 0, 1, 1) 05.12 
10 479 492 310 (1, 1, 0, 1, 1, 0, 1, 1, 1, 1) 05.16 
15 463 517 264 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1) 05.21 
20 571 562 341 (1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1) 05.57 
25 703 899 767 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) 20.47 

 
Table 2: Computational average time/sec for strongly correlated data instance 

Item size  Optimal value Optimal weight Optimal volume Item selected Time 

5 112 112 64 (1, 0, 0, 1, 1) 05.14 
10 503 503 119 (0, 0, 1, 1, 1, 1, 1, 0, 1, 1) 05.20 
15 1391 1391 394 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) 05.29 
20 1830 1830 855 (0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) 06.11 
25 1683 1683 966 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0) 21.10 

 
Computational experiments: The presented algorithm 
was implemented in FORTRAN 95 personal edition 
and a complete listing is available from the author on 
request. The following results have been achieved on an 
HP Pavilion g series Laptop machine. The operating 
system is windows 7 ultimate edition. The system 
rating is 5.5 windows experience index. The processor 
is Intel (R) Core (TM) i5-2430m CPU at 2.40 GHz 
speed. Installed Memory (RAM) is 6.00 GB. The 
system type is 32-bit operating system. We considered 
how the algorithm behaves in computational time for 
different problem sizes and test instances. Two of the 
three types of randomly generated data instances were 
considered. Each of the two set of data type instance 
considered were tested for different problem size of up 
to 25 for the sake of resource constraint to the 
researcher, especially time constraint. 

The presented results are average computational 
time values. The results also give the optimal values 
computed within the average computational time. These 
are shown in the various tables for the various data 
instances. 

 
RESULTS 

 
The average computing time for the two types of 

data instances are given in Table 1 and 2. It can be seen 
that our proposed algorithm is able to solve the data 
selected for the two data instances within seconds. It 
can also be seen from the computational times for both 
data instances that, a part of the number of data size, 
which determines the computational time, the weight of 
the items also plays a significant role in determining the 
computational time. 
 

CONCLUSION 
 

From the above, our presented results show that our 
proposed model and algorithm can be among the most 
efficient algorithms available in the literature for solving 
the 0-1 Knapsack Problem. The symmetric branching 
tree and the lazy sorting and reduction used by most 
algorithms are eliminated. The algorithm is so simple to 
implement (with the number of lines depending on the 
problem size) and should be an attractive alternative to 
other algorithms. 
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