
Research Journal of Applied Sciences, Engineering and Technology 9(11): 922-925, 2015
DOI:10.19026/rjaset.9.2584
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2015 Maxwell Scientific Publication Corp.

Submitted: September 13, 2014 Accepted: September 20, 2014 Published: April 15, 2015

Corresponding Author: M.A. Ofosu, Department of Mathematics, Kwame Nkrumah University of Science and Technology,

Kumasi, Ghana
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

922

Research Article
Volume Constraint Model and Algorithm for the 0-1 Knapsack Problem

1
M.A. Ofosu,

1
S.K. Amponsah and

2
F. Appau-Yeboah

1
Department of Mathematics, Kwame Nkrumah University of Science and Technology,

2
Department of Mathematics and Statistics, Kumasi Polytechnic, Kumasi, Ghana

Abstract: Today’s economic environment has highlighted the importance of properly optimizing every
organization’s asset including space and facilities portfolio. Reducing space cost by using space more efficiently can
release funds for other more important activities according to the National Audit Office (NAO) space management
in higher education. Utilization rate is a function of a frequency rate and an occupancy rate. The frequency rate
measures the proportion of time that space is used compared to its capacity. In this study, we have proposed a new
model formulation and algorithm design for the 0-1 knapsack problem. Our proposed algorithm considers volume or
space occupancy of the items as paramount, since no matter how profitable the item is to the camper if the volume
or the size is bigger than that of the volume of the knapsack since every knapsack also has a volume, there would be
no need to force it into the knapsack. The most interesting thing about the algorithm is that, it eliminates symmetric
branching tree and the lazy sorting used by most algorithms in the literature. Computational experiments provided
also show that our proposed algorithm can be among the most efficient algorithms available in the literature.

Keywords: 0-1 knapsack problem, algorithm development, knapsack model, volume constraint

INTRODUCTION

The classical Knapsack Problem is the problem of

choosing a subset of the n items such that the
corresponding profit sum is maximized without having
the weight sum to exceed the capacity c.

The general problem is formulated as integer linear
programming model:

Maximize � ����
�
���

Subject to � ����
�
��� ≤ c

�� ∈{0, 1}N

where, �� is a binary variable equalling 1 if item j

should be included in the knapsack and 0 otherwise,
thus a single constraint model.

From practical experience it is known that many
KP instances of considerable size can be solved within
reasonable time by exact solution methods. This fact is
due to several algorithmic refinements which have
emerged over the last two decades. This include
advance dynamic programming recursions, the exact
methods, heuristics method, the hybrid methods, the
concept of solving a core and the separation of cover
inequalities to tighten the formulation.

LITERATURE REVIEW

Sahni (1975) presented the first approximation

scheme for KP which made use of a greedy-type

procedure which finds a heuristic solution by filling in

order of decreasing
�

�

 ratio, that part of c which is left

vacant after the items of a given set M have been put
into the knapsack. This gave a time complexity of O (n)
for the procedure GS and the number of times it is

executed is O (��).
Ibarra and Kim (1975) obtained a fully polynomial-

time approximation scheme, i.e., a parametric algorithm
which allowed one to obtain any worst-case relative
error (note that imposing � is equivalent to imposing
(�) in polynomial-time and space and such that the time
and space complexities grow polynomially also with
the inverse of the worst-case relative error �. The basic
ideas in the Ibara-Kim algorithm are:

• To separate items according to profits into a class
of large items and one of small items

• To solve the problem for the large items only, with
profits scaled by a suitable scale factor �, through
dynamic programming. The dynamic programming
list is stored in a table T of length:

�(�
�)�� + 1

T (k) = undefined or is of the form (L (k), P (k),

w (k)), where L (k) is a subset of {1, ..., n}, P

(k) = � ��� ∈�(�) , w(k) = � ��� ∈�(�) and k = � ���� ∈�(�)

with ��� = �
�

� .

Res. J. App. Sci. Eng. Technol., 9(11): 922-925, 2015

923

Balas and Zemel (1980) developed a heuristics
method for the KP. The author’s heuristics was a simple
exchange algorithm for the core problem of KP, which
successfully removes an item i and replaces it by one or
two other items j, b in order to obtain a filled knapsack.
In spite of the simple structure, Balas and Zemel (1980)
were able to prove some interesting properties on the
quality of the solution found by their heuristic. The
authors procedure assumed that the core items are
indexed by 1, ..., m and that the capacity of the core
problem is !" . The break item in the core is denoted by
b and the residual capacity by filling the knapsack with

items j< b is r = !" – � ��
%&�
��� .

Early papers which specialized on Dynamic

Programming for the 0-1 Knapsack Problem includes

Bellman (1957), Dantzig (1957) and Bellman and

Dreyfus (1962). The idea is to first fill a small knapsack

optimally and then, using this information, fill larger a

knapsack optimally. This process is repeated until the

original problem is solved completely. Some

computational improvements were proposed by Toth

(1980).

In his award winning PhD-thesis, Pisinger (1995)

devised a dynamic programming recursion, which,

although the worst-case time complexity was O (bn) as

for the Bellman recursion, solves most relatively large

problem instances without enumerating too many

variables. The algorithm starts from the break solution

and at each stage either inserts or removes an item.

Strong upper bounds are used to limit the number states

in the recursion. The enumeration process terminates

due to some bounding tests, in which case it is possible

to prove that the current incumbent solution is optimal.

Martello et al. (1999) studied a model that

incorporated cardinality constraints into a very efficient

Dynamic Programming algorithm. Although the worst-

case time complexity of their algorithm was O (bn),

they solved most instances quite quickly due to the tight

bounds produced by the cardinality constraints.
Kolesar (1967) presented the first branch-and-

bound approach to the exact solution of KP. The
authors algorithm consists of a highest-first binary
branching scheme which:

• At each node, we select the not-yet-fixed item j

having the maximum profit per unit weight and

generate two descendent nodes by fixing ��,
respectively to 1 and 0.

• We continue the search from the feasible node for
which the value of upper bound '� is a maximum.
This however required a large computer memory
and processing time.

Due to the large computer memory and time

requirement of Kolesar’s algorithm Greenberg and
Hegerich (1970) presented a method which greatly
reduced Kolesar approach, differing from that of the
Kolesar in two main respects, namely:

• At each node, the continuous relaxation of the
induced sub-problem is solved and the
corresponding critical item (" is selected to generate
the two descendent nodes (by imposing �)" = 0 and
�)" = 1).

• The search continues from the node associated with
the exclusion of item (" (condition �)" = 0). When
the continuous relaxation has an all-integer
solution, the search is resumed from the last node
generated by imposing �)" = 1, i.e., the algorithm is
of depth-first type.

Horowitz and Sahni (1974) and independently,

Ahrens and Finke (1975) derived from the previous
scheme a depth-first algorithm in which:

• Selection of the branching variable �� is the same

as that of Kolesar.

• The search continues from the node associated with
the insertion of item j (condition �� = 1), i.e.,
following a greedy strategy.

However the algorithm presented by Horowitz-Sahni
was the most effective, structured and easy to
implement and has constituted the basis for several
improvements. The authors underlying assumption is
that, the items are sorted as in ascending order of profit
to weight ratio. A forward move consists of inserting
the largest possible set of new consecutive items into
the current solution. A backtracking move consists of
removing the last inserted item from the current
solution. Whenever a forward move is exhausted, the
upper bound '� corresponding to the current solution is
computed and compared with the best solution so far, in
order to check whether further forward moves could
lead to a better solution. If so, a new forward move is
performed; otherwise a backtracking follows. When the
last item has been considered, the current solution is
complete and possible updating of the best solution so
far occurs. The algorithm stops when no further
backtracking can be performed.

As an improvement upon Horowitz-Sahni
algorithm, Martello and Toth (1977a, b) presented a
method which differs from that of Horowitz and Sahni
in the following respect:

• Upper bound '� was used.
• The forward move associated with the solution of

the *+, item is split into two phases, namely:
building of a new current solution and saving of the
current solution. In the first phase, the largest set
-� of consecutive items which can be inserted into

the current solution starting from the *+, is defined
and the upper bound corresponding to the insertion

of the *+, item is computed. If this bound is less
than or equal to the value of the best solution so
far, a backtracking move immediately follows. If it
is greater, the second phase, that is insertion of the
items of set -� into the current solution, is

Res. J. App. Sci. Eng. Technol., 9(11): 922-925, 2015

924

performed only if the value of such a new solution
does not represent the maximum which can be

obtained by inserting the *+, item. Otherwise, the
best solution so far is changed, but the current
solution is not neglected, hence useless
backtracking on the items in -� is avoided.

• A particular formal procedure, based on dominance

criteria, is performed whenever, before a

backtracking move on the .+, item, the residual

capacity !/ does not allow insertion into the current
solution of any item following the .+,. The

procedure was based on the following

consideration: the current solution could be

improved only if the .+, item is replaced by an item

having greater profits and a weight small enough to

allow its insertion, or by at least two items having

global weight not greater than �0+!/. By this
approach it is generally possible to eliminate most

of the useless nodes generated at the lowest level of

the decision tree.

The upper bounds associated with the nodes of the

decision tree are computed through a parametric

technique based on the storing of information related to

the current solution. Supposing the current solution has

been built by inserting all the items from the *+, to the
1+,, then, when performing a backtracking on one of

these items, (say the .+,, j≤i<r), if no insertion

occurred for the items preceding the *+,, it is possible to
insert at least items i+1, ..., r into the new current

solution. To this end, we store in 1"0, �"0 and �20 the
quantities r+1 ; � ��

3
��0 and � ��

3
��0 respectively for i =

j, ..., r and in 1" the value r-1 (used for subsequent
updating). Following are detailed description of the

algorithm.

METHODOLOGY

Mathematical formulation of our proposed

problem: The classical Knapsack Problem is the

problem of choosing a subset of the n items such that

the corresponding profit sum is maximized without

having the weight sum to exceed the capacity c. The

general problem is formulated as integer linear

programming model:

Maximize � ����
�
���

Subject to � ����
�
��� ≤ c

�� ∈{0, 1}N

where, �� is a binary variable equalling 1 if item j

should be included in the knapsack and 0 otherwise,
thus a single constraint model.

However in real cases, the knapsacks as well as the
items to fill the knapsacks have volumes or sizes and
hence consideration should be given to the volume
constraints when modelling and developing an

algorithm to solve the knapsack problem, with the
mathematical formulation:

Maximize � ��

�
��� ��

Subject to � �0�
�
��� �� ≤ 50 , i = 1, ..., m

� 60�
�
��� �� ≤ 70 , i = 1, ..., m

�� ≥0 and integer, j = 1, .., n (1)

where, �� is a binary decision variable equalling 1 if
item j should be included in the knapsack and 0
otherwise, thus a two constraint model.

Algorithm: Given the knapsack problem with a total of

N items, let the number of items type be represented by

n mutually exclusive subsets of N, thus n∈N. Let the n
subsets also have members �9 that represent the
number of items that can be taken from each subset or

not taken from each subset, up to the total number of

items in each n subset and volume 69 of each item. The

input to this algorithm is the feasible region of a binary

integer program {x∈ {0, 1}
n
: Ax≤b}, mutually

exclusive n sets that represents the number of item

types of the binary integer program, the positive

integers of the weights (�0), the profits (�0), the (60)
volume and the knapsack capacity (b). The basic idea of

the algorithm is to find non-cover optimum solutions

for :∗, <=, �=, 7>, the number of items from the various

n sets item types that will be selected to obtain the

optimum solution to the optimization 0-1 knapsack

problem ��.

Initialization:
S: = b; V;

L: = 0, @A�BCD: = 0, @A�BED: = 0, F�: = 0;
k: = n
x (k): = {0,, n}

Main step:
@A��G = 1
For each subset item .) ∈ �9 = 0 to @A��G

 Solve the following

 L = .) ∈ �9: � .)70H
�G
0H��

 <=CD = .) ∈ �9: � .)<0H
�G
0H��

7=CD = .) ∈ �9: � .)70H
�G
0H��

Check for feasibility:
 While <=CD < S, 7=CD < IB and @A�BCD < L
 @A�BCD = L; F� = <=CD; @A�BED = 7=CD
 For j = 1, k
 x (j) = {.) }
 End For
 End While
End For

Termination:
Output: x (j), @A�BCD , @A�BED and F� as the solutions.

Res. J. App. Sci. Eng. Technol., 9(11): 922-925, 2015

925

Table 1: Computational average time/sec for weakly correlated data instance

Item size Optimal value Optimal weight Optimal volume Item selected Time

5 45 26 14 (1, 1, 0, 1, 1) 05.12
10 479 492 310 (1, 1, 0, 1, 1, 0, 1, 1, 1, 1) 05.16
15 463 517 264 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1) 05.21
20 571 562 341 (1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1) 05.57
25 703 899 767 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) 20.47

Table 2: Computational average time/sec for strongly correlated data instance

Item size Optimal value Optimal weight Optimal volume Item selected Time

5 112 112 64 (1, 0, 0, 1, 1) 05.14
10 503 503 119 (0, 0, 1, 1, 1, 1, 1, 0, 1, 1) 05.20
15 1391 1391 394 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) 05.29
20 1830 1830 855 (0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) 06.11
25 1683 1683 966 (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0) 21.10

Computational experiments: The presented algorithm
was implemented in FORTRAN 95 personal edition
and a complete listing is available from the author on
request. The following results have been achieved on an
HP Pavilion g series Laptop machine. The operating
system is windows 7 ultimate edition. The system
rating is 5.5 windows experience index. The processor
is Intel (R) Core (TM) i5-2430m CPU at 2.40 GHz
speed. Installed Memory (RAM) is 6.00 GB. The
system type is 32-bit operating system. We considered
how the algorithm behaves in computational time for
different problem sizes and test instances. Two of the
three types of randomly generated data instances were
considered. Each of the two set of data type instance
considered were tested for different problem size of up
to 25 for the sake of resource constraint to the
researcher, especially time constraint.

The presented results are average computational
time values. The results also give the optimal values
computed within the average computational time. These
are shown in the various tables for the various data
instances.

RESULTS

The average computing time for the two types of

data instances are given in Table 1 and 2. It can be seen
that our proposed algorithm is able to solve the data
selected for the two data instances within seconds. It
can also be seen from the computational times for both
data instances that, a part of the number of data size,
which determines the computational time, the weight of
the items also plays a significant role in determining the
computational time.

CONCLUSION

From the above, our presented results show that our
proposed model and algorithm can be among the most
efficient algorithms available in the literature for solving
the 0-1 Knapsack Problem. The symmetric branching
tree and the lazy sorting and reduction used by most
algorithms are eliminated. The algorithm is so simple to
implement (with the number of lines depending on the
problem size) and should be an attractive alternative to
other algorithms.

REFERENCES

Ahrens, J.H. and G. Finke, 1975. Merging and sorting

applied to the 0-1 knapsack problem. Oper. Res.,
23: 1099-1109.

Balas, E. and E. Zemel, 1980. An algorithm for large
zero-one knapsack problems. Oper. Res., 28:
1130-1154.

Bellman, R., 1957. Dynamic Programming. Princeton
University Press, Princeton, NJ.

Bellman, R. and S.E. Dreyfus, 1962. Applied Dynamic
Programming. Princeton University Press,
Princeton, NJ.

Dantzig, G.B., 1957. Discrete variable extremum
problems. Oper. Res., 5: 266-277.

Greenberg, H. and R.L. Hegerich, 1970. A branch
search algorithm for the knapsack problem.
Discrete Appl. Math., 2: 21-25.

Horowitz, E. and S. Sahni, 1974. Computing partitions
with applications to the knapsack problem.
J. ACM, 21: 277-292.

Ibarra, O.H. and C.E. Kim, 1975. Fast approximation
algorithms for the knapsack and sum of subset
problems. J. ACM, 22: 463-468.

Kolesar, P.J., 1967. A branch and bound algorithm for
the knapsack problem. Manage. Sci., 13: 723-735.

Martello, S. and P. Toth, 1977a. An upper bound for the
zero-one knapsack problem and a branch and
bound algorithm. Eur. J. Oper. Res., 1: 169-175.

Martello, S. and P. Toth, 1977b. Computational
experiences with large-size unidimensional
knapsack problems. Presented at the TIMS/ORSA
Joint National Meeting, San Francisco.

Martello, S., D. Pisinger and P. Toth, 1999. Dynamic
programming and tight bounds for the 0-1
knapsack problem. Manage. Sci., 45: 414-424.

Pisinger, D., 1995. A minimal algorithm for the
multiple-choice knapsack problem. Eur. J. Oper.
Res., 83(2-3): 394-410.

Sahni, S., 1975. Approximate algorithm for the 0-1
knapsack problem. J. ACM, 22: 115-124.

Toth, P., 1980. Dynamic programming algorithms for
the zero-one knapsack problem. Computing, 25:
29-45.

