
Research Journal of Applied Sciences, Engineering and Technology 9(11): 926-934, 2015

DOI:10.19026/rjaset.9.2585

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: September 18, 2014 Accepted: October 12, 2014 Published: April 15, 2015

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).
926

Research Article
Versioning Based Dynamic Reconfiguration for SOA Applications

Vallidevi Krishnamurthy
SSN College of Engineering, Anna University, Chennai-603110, Tamil Nadu, India

Abstract: Service Level Agreement or contract is a document that captures the functional and QoS levels agreed
between the service provider and the consumer. In a service-oriented environment, individual services can be
suitably composed to create a composite service. Whenever a new version of a composite service is created, for the
same service consumer, in order to satisfy the change in consumer requirements, the respective contracts also need
to be versioned. Likewise, whenever a service consumer is dynamically provided different versions of the services
based on their requirements, the respective contracts also need to be activated, automatically. In this context, this
study proposes an approach for, dynamic reconfiguration of a service-oriented application, which has been offered
as a composite service with its corresponding version of the contract. This dynamic reconfiguration approach has
been tested by applying it to a sample SOA based e-Shopping application.

Keywords: Backward-compatibility, change, contract, requirements, service-consumer, service-provider

INTRODUCTION

Service-Oriented Architecture (SOA) (Newcomer

and Lomow, 2005; Erl, 2009) is an architectural style
for developing software applications that use services
as their building blocks. Web services (Schmelzer
et al., 2002; Josuttis, 2007) are application components
which are self-contained, self-describing and are used
by other applications. These are both platform and
language independent. The service providers could
either provide an atomic service or a composite service.
Whenever a service provider wants to provide a
composite service, the provider has an option of
composing the atomic services which are either
developed in-house or outsourced. In the present work,
it has been assumed, that the service provider composes
the application, entirely with services that are
developed in-house. Whenever, there is a change in the
requirements posed by the service consumer, the
provider creates a new version of the composite service.
Based on these changing requirements, the provider
should dynamically reconfigure the service oriented
application by enabling the consumers, to switch among
the relevant versions of the application. Whenever a
different version of the application is switched to, it is
essential that the corresponding contract is also
simultaneously activated.

In this context, this study has made the following
contributions:

• An approach for dynamic reconfiguration of the
service oriented application by switching among its
various versions along with the corresponding
contracts.

• Automatic generation of the version numbers for
the contracts. The audience for this study are the
service oriented application providers who built
applications with atomic services that were
developed in-house.

Whenever additional features are requested by the

service consumer, the service provider incorporates
these features and creates a new version. Whenever a
new version of the application is created, the service
provider should check whether the newly developed
version is a backward compatible one. The new version
of the application is backward compatible, when the
existing service consumers are not affected by the new
version of the application. In that case, the application
does not remove any of the existing features. Either
additional features are included in the new version, or
an alternative implementation for the existing service
interface is provided. As this versioning of the
composite service oriented application is not in the
present scope of this study, only brief details are
provided. More detailed explanation about the
versioning of the service oriented application can be
found in (Novakouski et al., 2012; Brown and Ellis,
2004; Evdemon, 2005; Kaminski et al., 2006; Hummer
et al., 2011; Bianco et al., 2008).

Whenever the requirements of service consumers

change, the service oriented application has to be

dynamically reconfigured by switching among the

various relevant versions along with the corresponding

contracts.

Hence, contract versioning has to be realized,

corresponding to different versions of the application.

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

927

In this study, an approach for automatically generating

these contracts with a proper version number, using the

WS-Agreement standard has been proposed.

A contract is the most important metadata in SOA
(Schmelzer et al., 2002). Whenever a new version of
the contract, does not affect the other existing service
consumers, then the contract is a backward compatible
one. In this study, the term, service provider is used for
the one, who provides the composite service, to
maintain a portal for a specific business organization.
The term service consumer refers to the one who
maintains a portal for a specific business organization.
The term end user refers to the one who uses the
specific business organization portal for some purpose.

LITERATURE REVIEW

Versioning of contracts can be achieved by three
different ways (Erl et al., 2008).

Changing WSDL definition: Changing the WSDL
document will have the most visible impact, than
changing the message definitions and policies. When
the first version of the WSDL definition is generated,
version number is zero. A backward compatible change
in the WSDL definition increments the minor version
number and does not change its target namespace. An
incompatible change in the WSDL definition,
increments the major version number and stores that in
a new target namespace. These concepts are explained
through the following examples:

• Adding a new operation: When a WSDL
definition is already implemented and in use,
consumers will have dependencies on existing
operation definitions. Extending the contract by
adding a new operation in the WSDL definition
will not impact these dependencies and is
considered to be a backward compatible change.

• Renaming an existing operation: If the value of
the name of an existing operation element has to be
changed, then this is an incompatible change as the
other existing service consumers will be affected
because of this change. There are two common
ways to handle this change.

o Force a new major version of contract:
Whenever the existing operation name has to be
modified, then the contract is subject to an
incompatible change that will require a new
version of the contract.

o Add the renamed operation to the existing
contract: The new operation has to be added
along with the original operation. This allows
overlapping functionality to exist in the same
service contract.

Changing message schema: Whenever an XML
Schema definition undergoes a change that requires a
new target namespace, then for that change in the
schema, the change will propagate to the WSDL level,

resulting in a new target namespace for the WSDL
definition.
The common change types are:

• Adding a new schema component: A new
element declaration will be added to the existing
schema, which results in changing the namespace
value.

• Removing an existing schema component: The
removal of the component declaration from an
existing XML Schema definition results in an
incompatible change that forces a new schema and
WSDL definition version.

• Renaming an existing schema component: By
default, changing the value of an existing
component, results in an incompatible change that
requires a new target namespace and a new
contract version.

• Modifying the constraint of an existing schema
component: Adjusting the validation component is
one possible type of changing constraints.
Maximum occurs and minimum occurs can be
specified as unbounded.

Changing policy assertions: Web service contract can
be versioned with policies that express additional
constraints, requirements and security attributes. All
these attributes relate to the behavior of services.
Human readable and machine readable policies can be
created.

MATERIALS AND METHODS

Related work, application scenario and the
proposed work are discussed under this section.

Related work: Dynamic Reconfiguration in SOA
applications has been discussed in several existing
works. However, many of these works focus on the
dynamic reconfiguration with substitution of an
equivalent atomic service.

Even in the few works which focus on the
reconfiguration of the composite service, the
corresponding change in contract versions is not
addressed. However, in the proposed work,
reconfiguration of the application along with the
corresponding contract is the main focus, as the
contract also varies, whenever the application is
reconfigured.

In all the existing works, the service substitution is
also realized with the services provided by different
service providers. As the versioning based dynamic
reconfiguration for a composite service, along with the
corresponding contract, is the main focus of the
proposed work, whenever the composite service
switches, from one version to another, its corresponding
contract also needs to be activated. Hence, if the
composite service is composed of services, that are
provided by multiple service providers, then, the
contract corresponding to that composite service, will in

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

928

Fig. 1: e-Shopping application with various versions and their respective contracts

turn depend on various other service providers.

Whenever, more dependency exists among various

service providers, the complexity involved in the

dynamic reconfiguration of the application increases.

Hence, the present work, is based on the assumption,

that all the services are provided by the same service

provider.

Few works that focus on dynamic reconfiguration

in the SOA environment are listed below:

• Dynamic Reconfigurable ESB Service Routing

(DRESR) (Bai et al., 2007) approach, allows the

abstract routing table to be changed at runtime in

which the service provider for each node, service

composition logic and service integration topology

can be changed. Though DRESR is also for

dynamically reconfiguring the composite service in

the SOA environment, the service provider

changes, when the services are dynamically

reconfigured, which is the main difference between

the work proposed in this study and the DRESR.

• SIROCO middleware (Fredj et al., 2008) platform,

deals with the reconfiguration of service

orchestrations, for the unavailable services, by

replacing an atomic service with an alternative

service which provides the same functionality. In

SIROCO middleware, an atomic service is

substituted at runtime for a service that is

unavailable.

• The work proposed by Geebelen et al. (2008),

focuses on dynamic reconfiguration in a composite

service, by defining the templates statically.

Template based dynamic reconfiguration discussed

by Geebelen achieves reconfiguration by altering

the workflows at runtime, that are defined

statically. In this study, the workflow related

details are kept as separate modules and hence they

are reusable also in future. However, the services

that are alternatively substituted need not be from

the same service provider, which is the difference

from the proposed work.

E-shopping application scenario: Figure 1 represents

the overview of the various versions available in an

Online Shopping application. The various

functionalities available in the application are

represented by the atomic services chosen by the

service consumer. The same application with various

versions is shown in this figure. Application A1 has

functionalities such as registration, login, selecting the

items, inserting and deleting the items from the cart,

payment and updation. According to this application,

which is considered as a basic version, new users can

register and then login with their credentials. After

successful login, to the online shopping site, the user

selects the required items and moves them to the

shopping cart. Total cost of all these items stored inside

the cart is calculated with the permissible discount and

the receipt is generated. Subsequently, the user makes

the payment. Once the payment is completed, the

shipping dates are notified to the user. Updation of the

items in the stock list takes place simultaneously with

the notification of the shipping details to the user. In

Application A1.1, an alert service is included along with

the atomic services in application A1. As there

Res. J. Appl. Sci. Eng. Technol.,

Fig. 2: System Architecture of V-DROPS

Fig. 3: Module Design for Requirements Capturer

is only an addition of service functionality (alert
service) in application A1.1, it is a minor version of
application A1.

In application A2, which is shown in Fig. 1,
Payment service is replaced by Discount Pay service.
Also, there are two additional features (Security Check
and Status Report) compared to the latest version of the
application, A1.1. As a service has been renamed, along
with a change in its functionality and also two
additional functionalities have been introduced, the
application should have a major version change. This
new version of the application is named as A
Check service collects the security information such as,
pan card number from the customers when the payment
exceeds rupees 50,000. Status Report is the service,
which updates the delivery status information to the
user, who has purchased the items. The service
consumer switches among different versions of the
application based upon the calendar period specified in
the SLA. For example, whenever the application is
expected to receive a huge number of requests, the
service consumer might need the additional

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

929

Fig. 3: Module Design for Requirements Capturer

an addition of service functionality (alert
, it is a minor version of

is shown in Fig. 1,
Payment service is replaced by Discount Pay service.
Also, there are two additional features (Security Check
and Status Report) compared to the latest version of the

. As a service has been renamed, along
in its functionality and also two

additional functionalities have been introduced, the
application should have a major version change. This
new version of the application is named as A2. Security
Check service collects the security information such as,

card number from the customers when the payment
exceeds rupees 50,000. Status Report is the service,
which updates the delivery status information to the
user, who has purchased the items. The service
consumer switches among different versions of the

ication based upon the calendar period specified in
the SLA. For example, whenever the application is
expected to receive a huge number of requests, the

additional feature,

provided by the alert service. This alert se

an alarm message to the administrator when the total

counts in the stock, drops down below a certain limit.

This will help the administrator to refill the stock in the

respective warehouse, which in turn helps to avoid

scenarios leading to displaying the message

Stock” for a particular product. In this case, the service

consumer switches from application A

A1.1. Otherwise, the service consumers can also request

for application A2 instead of A1.1, as A

features. All these requests are specified in the initial

contract that is established between the service provider

and the service consumer. In Fig. 1, the policy tags are

also shown as examples, which specify the calendar

period through which the various versions of the

application are available. These policy tags are

specified as a part of the service contract that is

mutually agreed between the service provider and the

service consumer. These calendar periods are obtained

as input from the service consumers, which are

explained in more detail through Fig. 2 and 3.

provided by the alert service. This alert service provides

an alarm message to the administrator when the total

counts in the stock, drops down below a certain limit.

This will help the administrator to refill the stock in the

respective warehouse, which in turn helps to avoid

isplaying the message “Out of

for a particular product. In this case, the service

consumer switches from application A1 to application

. Otherwise, the service consumers can also request

, as A2 has additional

features. All these requests are specified in the initial

contract that is established between the service provider

and the service consumer. In Fig. 1, the policy tags are

also shown as examples, which specify the calendar

hich the various versions of the

application are available. These policy tags are

specified as a part of the service contract that is

mutually agreed between the service provider and the

service consumer. These calendar periods are obtained

he service consumers, which are

explained in more detail through Fig. 2 and 3.

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

930

V-DROPS: Versioning based Dynamic

Reconfiguration for a cOmPosite Service and its

contract in an SOA environment: The system

architecture is shown in Fig. 2. A brief description of

this figure is as follows. The service provider develops

various individual services such as (S1, S2, S3, S4) and

these atomic services are provided through a menu to

the service consumer. The service consumer can choose

the required services and that request is collected by the

Requirements Capturer. The selected services are

composed by the service provider by the BPEL

composition engine. The requirements captured by

Requirements Capturer are then fed to the Version

Manager. The Version Manager analyzes the version

details from the log information and identifies the

appropriate version number of the application. The

Provision Manager maps the particular application with

the respective contract and the end user can use the

particular application in the specified calendar period.

A service level agreement which is also called as the

contract is generated by the service provider. Once it is

mutually accepted, between the service consumer and

the provider, the service consumer starts using the

application.

There are four modules in the proposed V-DROPS

approach. They are:

Requirements capturer: Menu driven lists of services

developed by the service provider are offered to the

service consumers. The consumer has to choose the

various atomic services based on his requirements. The

consumer also selects the duration for which these

atomic services are required. Figure 3 shows the

module design for Requirements Capturer. In this

figure, the various atomic services namely S1, S2, S3

and S4 are selected. Followed by that, to specify the

calendar period, two combo boxes “calendar time

from” and “calendar time to” are used to obtain the

calendar period as input, from the service consumer. All

these collected requirements are fed to the BPEL

Composer. For the entire duration of 12 months, the

service consumer selects the required services.

Whenever the selection of atomic service is missing for

some duration, then, the composite service becomes

inactive during that period.

Version manager: The requirements obtained through

the Requirements Capturer are forwarded to the

Backward Compatibility Checker, which is available

inside the Version Manager. The Backward

Compatibility Checker checks the log information that

is available in the Contract Registry, to identify whether

there is any composite service already being provided

for this same service consumer. The latest contract

details are retrieved from the Contract Registry and are

fed as input to the parser. If there is no entry in the

contract registry, the information related to the selected

Fig. 4: Module Design for BPEL Composer

services are logged in the Contract Registry and the

application is versioned as application A1. This means

that, it is the first time the composite service is being

provided for the service consumer and there was no

contract that was existing earlier between the same the

service consumer and the provider. Otherwise, the

selected atomic services are compared with the already

existing application for the backward compatibility. If

the selected sets of services are backward compatible

with the atomic services of the already existing

application, a minor version of the application is

created. Whenever the backward compatibility is

violated, then a major version of existing application is

generated. Whenever the application is versioned, its

respective contract is also generated and versioned. The

new contract details are also logged in the Contract

Registry.

BPEL composer: The requests from the service

consumer are obtained and the services are composed

through the BPEL composition. Figure 4 shows the

design for the BPEL composition module. From

contract registry, the atomic services selected by the

service consumers are identified and those services are

selected from the web service registry to compose them

through BPEL. After composing the atomic services,

the composite service and the Composite Application

Service Assembly (CASA) file are obtained as output.

Provisioning manager: The Provisioning Manager

maps the various versions of the application along with

their respective contracts, which are available in the

BPEL Composition Registry and Contract Registry.

The version number of the application should match

with the version number of the contract. Based on the

request from the service consumer, the application and

its respective contract are dynamically mapped. In

Fig. 2, the Provisioning Manager is shown where the

entries from the BPEL composition library and the

contract library are mapped. Provisioning Manager

compares the system date with the date specified in the

contract and switches from the existing version to the

next version whenever required. Thus, the Provisioning

Manager enables dynamic reconfiguration of the

application based on the requirements of the service

consumer. The various inputs from the end-user are

Res. J. Appl. Sci. Eng. Technol.,

forwarded to the respective application, based on the

decision taken by the Provisioning Manager.

RESULTS AND DISCUSSION OF V

This section explains the dynamic contract

generation for the SOA application using the WS

Agreement standard. The main contributions of the

study namely, dynamic reconfiguration of the

application along with the corresponding contracts and

automatic generations of contract version numbers are

also explained in detail. These dynamic

reconfigurations are based on the requirements of the

service consumers specified in their SLA (Fig. 5).

Automatic contract generation: Contract generation

can be realized using two different specification

standards namely WSLA (Keller and

and WS- Agreement (Andrieux et al

proposed work, WS-Agreement specification standard

is used for the contract generation. Contract is

dynamically generated using the JAXB marshalling

process. The input values for the application are

provided, by creating an appropriate BPEL workflow.

On deployment of composite application, Netbeans IDE

automatically generates a Composite Application

Service Assembly (CASA) file. Th

configuration details and the details of the atomic

services involved for the composite application are

available in the CASA file. From the CASA file, the

wsdl definition details are parsed using the DOM parser

(Coyle, 2002). Later, the details corresponding to each

Fig. 5: Contract generation based on user selection

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

931

forwarded to the respective application, based on the

decision taken by the Provisioning Manager.

RESULTS AND DISCUSSION OF V-DROPS

This section explains the dynamic contract

generation for the SOA application using the WS-

Agreement standard. The main contributions of the

namely, dynamic reconfiguration of the

application along with the corresponding contracts and

ations of contract version numbers are

also explained in detail. These dynamic

reconfigurations are based on the requirements of the

service consumers specified in their SLA (Fig. 5).

Contract generation

g two different specification

standards namely WSLA (Keller and Ludwig, 2003)

et al., 2005). In the

Agreement specification standard

is used for the contract generation. Contract is

the JAXB marshalling

process. The input values for the application are

provided, by creating an appropriate BPEL workflow.

On deployment of composite application, Netbeans IDE

automatically generates a Composite Application

Service Assembly (CASA) file. The whole

configuration details and the details of the atomic

services involved for the composite application are

available in the CASA file. From the CASA file, the

wsdl definition details are parsed using the DOM parser

orresponding to each

of the atomic services are stored in separate string array

and are included in the contract. The atomic services

based on the requirements of the service consumer are

selected and then the calendar period through which

those services should be activated is specified as shown

in Fig. 5. After submitting the calendar period, the

version number and its respective contracts are

generated automatically. The generated contract is

shown in the left side of Fig. 5. The details specified by

the service consumer are captured as input and they are

also reflected in the contract. These details are marked

in the red color.

Automatic contract versioning and dynamic

reconfiguration: Versioning of contracts is performed

based on the concept of backward compatibility. The

most recent contract details are tracked from the

contract registry and they are given as input to the

DOM parser. Based on the backward compatibility

between the existing contract and the currently

generated one, the version number is generated for the

new contract. For example, if there is a new contract C

and an existing contract Ce, where

numbers, the value n is identified based on the

backward compatibility checking between the existing

and the new contract. Hence, the details of the atomic

services in contract Cn that are stored in the string array

(which was explained in the Automatic Contract

Generation section), are compared with the string array

corresponding to the contract Ce. If all the e

the string array of contract Ce, are available in the string

array of Contract Cn, then it is backward

Fig. 5: Contract generation based on user selection

of the atomic services are stored in separate string array

and are included in the contract. The atomic services

based on the requirements of the service consumer are

selected and then the calendar period through which

should be activated is specified as shown

in Fig. 5. After submitting the calendar period, the

version number and its respective contracts are

generated automatically. The generated contract is

shown in the left side of Fig. 5. The details specified by

service consumer are captured as input and they are

also reflected in the contract. These details are marked

Automatic contract versioning and dynamic

Versioning of contracts is performed

ept of backward compatibility. The

most recent contract details are tracked from the

contract registry and they are given as input to the

DOM parser. Based on the backward compatibility

between the existing contract and the currently

sion number is generated for the

new contract. For example, if there is a new contract Cn

, where n and e are version

numbers, the value n is identified based on the

backward compatibility checking between the existing

new contract. Hence, the details of the atomic

are stored in the string array

(which was explained in the Automatic Contract

Generation section), are compared with the string array

. If all the elements in

, are available in the string

, then it is backward

Res. J. Appl. Sci. Eng. Technol.,

Fig. 6: Reconfiguration of application and respective contract

Table 1: Analysis report for backward compatibility checking

Changes made in Supports backward compatibility

Wsdl definition • Adding wsdl definition

• Adding a new wsdl port type definition

• Adding a new wsdl binding
Examples: A1.1->Alert service is added

Message schema

• Adding xml schema or attribute declaration

• Reducing the constraint granularity of an xml schema
element

Examples:

A1.1.1->An attribute security number is
A1.1.2->Constraint granularity of attributes is changed as

min = 0 max = unbounded

attributes will be min =
Adding policy • Adding a new ignorable policy assertion.

• Adding a new policy alternative.
Examples: Min and max validity of particular service can be stated

using policy assertion. Ignorable policies are
backward compatible.

Alert service will be available only between 6

compatible. Hence, the contract Cn will be the minor

version of the contract Ce.

In another case, where few elements in the string

array of the contract Cn are missing or altered, then it

violates the rule of backward compatibility. Hence, a

major version of the contract is generated and the new

application that corresponds to this contract also

functionality that is removed/altered when compared to

the existing version. By Changing the WSDL definition

which was explained in Background section,

major/minor version of the contract is generated. By

changing the Message schema and the Policy

Assertions minor/very-minor version of the contract is

generated. The running system automatically switches

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

932

Fig. 6: Reconfiguration of application and respective contract

report for backward compatibility checking

Supports backward compatibility Violates backward compatibility

Adding wsdl definition

Adding a new wsdl port type definition

Adding a new wsdl binding

• Renaming an existing wsdl

• Removing an existing wsdl definition.

>Alert service is added A2->payment service is altered as discount pay

service.

Adding xml schema or attribute declaration

Reducing the constraint granularity of an xml schema

• Renaming an optional or required schema element

• Increasing the constraint granularity

• Removing an optional/required schema element

>An attribute security number is included.
>Constraint granularity of attributes is changed as

unbounded. The default granularity for

 1 max = unbounded.

A1.2->Renaming the attribute name password as
secured number /Removing the attribute name

password.

Adding a new ignorable policy assertion.

Adding a new policy alternative.

• Adding a required policy assertion.

Min and max validity of particular service can be stated

using policy assertion. Ignorable policies are always

Alert service will be available only between 6-10 pm.

Required policy assertion violation the

compatibility.

will be the minor

where few elements in the string

are missing or altered, then it

violates the rule of backward compatibility. Hence, a

major version of the contract is generated and the new

application that corresponds to this contract also has a

functionality that is removed/altered when compared to

the existing version. By Changing the WSDL definition

which was explained in Background section,

major/minor version of the contract is generated. By

changing the Message schema and the Policy

minor version of the contract is

generated. The running system automatically switches

to the application version, requested by the service

consumer. This is explained in the screen

captured in Fig. 6, where the service consumer

requested for the Application A2 which is shown in the

contract with a red line. In this figure, application A

requested for the duration from March 1, 2014 to June

1, 2014. The left side of Fig. 6, also contains the current

time of the system in which the application is executed.

March 17, 2014 lies between the calendar period

specified in the contract and the requested application

A2 is activated automatically.

The analysis report for the various changes in the

application which leads to major/min

versions of both the application and the contract are

Violates backward compatibility

Renaming an existing wsdl definition.

Removing an existing wsdl definition.

>payment service is altered as discount pay

Renaming an optional or required schema element

Increasing the constraint granularity

Removing an optional/required schema element

>Renaming the attribute name password as
secured number /Removing the attribute name

required policy assertion.

violation the backward

to the application version, requested by the service

consumer. This is explained in the screen-shot that is

service consumer has

which is shown in the

contract with a red line. In this figure, application A2 is

requested for the duration from March 1, 2014 to June

1, 2014. The left side of Fig. 6, also contains the current

hich the application is executed.

March 17, 2014 lies between the calendar period

specified in the contract and the requested application

The analysis report for the various changes in the

application which leads to major/minor/very-minor

versions of both the application and the contract are

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

933

captured in Table 1. This analysis report is based on the

backward compatibility concept that was discussed

earlier.

In the cases where the application supports the

backward compatibility, it leads to minor/very-minor

version of both the application and its respective

contract. In some other cases where the newly created

application does not support backward compatibility

with the existing one, then a major/minor version of

application and the contract are generated. The

examples for the change in the WSDL definition,

Message Schema and the Policy Assertions are

provided in Table 1.

CONCLUSION AND RECOMMENDATIONS

Contract creates trustworthiness between various

business partners. An automated contract generation

and versioning of contracts for dynamic reconfiguration

of the SOA application is discussed in this study.

Versioning of the application for the same service

consumer is needed as the consumer requests are

changing frequently. Whenever the application is

versioned, the respective contract also needs to be

generated and versioned. The web service composition

is based on the BPEL Engine and the contract

generation is according to WS-Agreement specification

standard. Both, versioning of the application and the

contract are based on the concept of the backward

compatibility. In the proposed work, atomic services

developed by the same service provider, are considered

for the composition of the SOA application. This is

because, to dynamically reconfigure the SOA

application, through the V-DROPS approach, services

developed by the same provider, reduces the

dependency on other service providers.

Dynamic composition of the services provided by

various service providers, with the corresponding

contract being activated at that time, will be the future

direction. With this approach, the service consumers

need not freeze all the requirements at the design time

itself. They can request their requirements even during

runtime.

ACKNOWLEDGMENT

I would like to thank, Dr. Chitra Babu, my

supervisor, for her continuous encouragement, support

and tireless guidance in shaping this study.

REFERENCES

Andrieux, A., K. Czajkowski, A. Dan, K. Keahey, H.

Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S.

Tuecke and M. Xu, 2005. Web services agreement

specification (WS-agreement). Technical Report,

Global Grid Forum, Grid Resource Allocation

Agreement Protocol (GRAAP) WG.

Bai, X., J. Xie, B. Chen and S. Xiao, 2007. DRESR:

Dynamic routing in enterprise service bus.

Proceedings of the IEEE International Conference

on e-Business Engineering (ICEBE'07). Hong

Kong, China, pp: 528-531.

Bianco, P., G.A. Lewis and P.F. Merson, 2008. Service

level agreements in service-oriented architecture

environments, software architecture technology

initiative integration of software-intensive systems

initiative. Technical Note-CMU/SEI-2008-TN-021,

Carnegie Mellon University.

Brown, K. and M. Ellis, 2004. Best Practices for Web

Services Versioning. Retrieved from: https://www.

ibm.com/developerworks/webservices/library/ws-

version/.

Coyle, F.P., 2002. XML Web Services and the Data

Revolution. 1st Edn., Pearson Education, India.

Erl, T., 2009. SOA Design Patterns. Prentice Hall PTR,

USA.

Erl, T., A. Kamarkar, P.H. Haas, U. Yacinalp, C.K. Liu,

D. Orchard, A. Tost and J. Pasley, 2008. Web

Service Contract Design and Versioning for SOA.

Prentice Hall, USA.

Evdemon, J., 2005. Principles of Service Design:

Service Versioning. Retrieved from: “http:// msdn.

microsoft. com/en-us/library/ms954726.aspx".

Fredj, M., N. Georgantas, V. Issarny and A. Zarras,

2008. Dynamic service substitution in service-

oriented architectures. Proceedings of the IEEE

Congress on Services-Part I (SERVICES'08).

Honolulu, HI, pp: 101-104.

Geebelen, K., S. Michiels and W. Joosen, 2008.

Dynamic reconfiguration using template based web

service composition. Proceedings of the 3rd

Workshop on Middleware for Service Oriented

Computing (MW4SOC'08). Belgium, New York,

USA, pp: 49-54.

Hummer, W., P. Leitner, A. Michlmayr, F. Rosenberg

and S. Dustdar, 2011. VRESCO-Vienna Runtime

Environment for Service-Oriented Computing. In:

Service Engineering: European Research Results.

Springer, Vienna, pp: 299-324.

Josuttis, N.M., 2007. SOA in Practice. Oreilly Shroff

Publications, USA.

Kaminski, P., H. Muller and M. Litoiu, 2006. A design

for adaptive web service evolution. Proceedings of

the 28th International Workshop on Self-

Adaptation and Self-Managing Systems

(SEAMS'06). Shanghai, China, pp: 86-92.

Keller, K. and H. Ludwig, 2003. The WSLA

framework: Specifying and monitoring service

level agreements for web services. J. Netw. Syst.

Manage., 11(1): 57-81.

Newcomer, E. and G. Lomow, 2005. Understanding

SOA with Web Services. 1st Edn., Pearson, India.

Res. J. Appl. Sci. Eng. Technol., 9(11): 926-934, 2015

934

Novakouski, M., G. Lewis, W. Anderson and J.

Davenport, 2012. Best practices for artifact

versioning in service-oriented systems. Technical

Note-CMU/SEI-2011-TN-009.

Schmelzer, R., T. Vandersypen, J. Bloomberg, M.
Siddlingaiah, S. Huunting, M.D. Qualis, D.
Houlding, C. Darby and D. Kennedy, 2002. XML
and WebServices Unleashed. 1st Edn., Sams
Publishing, Pearson, India.

