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Abstract: The goal of this study is to study the conditions of dynamic compatibility on gas-dynamic discontinuities 
written in the form of a generalized adiabat. We have considered the basic concepts of the gas-dynamic 
discontinuity theory, the ratios permitting to calculate pressure shocks. Recommendations for rational problem 
definition and methods of solution of the typical computational problems are given. The dependences for calculation 
of parameters behind the shock according to the known parameters of a stream and the shock intensity recorded for 
the first time with the help of a generalized adiabatic line are considered. Substituting in these relations equations of 
adiabatic line of Laplace-Poisson, Rankine-Hugoniot and Chapman-Jouget, you can calculate the parameters behind, 
accordingly: simple waves, shockwaves and detonation waves. There are given in friendly graphic form the 
dependence on the Mach number of incoming flow and gas adiabatic index of the most relevant parameters of 
shocks: maximum intensity, stream deviation angle on the shock, critical angle of the stream deviation, shock angle 
according to the critical angle of a the stream deviation. The work can be recommended to the experts, engineers and 
scientists working in the field of aerospace engineering, metallurgy and metal hardening, for usage of control 
technologies for hypersonic currents containing gas-dynamic discontinuity. 
 
Keywords: Maximum shock-wave amplitude, shock, shock intensity, shockwave 
 

INTRODUCTION 
 

The objects of study are relations connecting the 
gas-dynamic variables on both sides of the gas-dynamic 
discontinuity (shock, shock wave or detonation), known 
as Dynamic Compatibility Conditions (DCC). In many 
practical cases it is necessary to know how to expect 
gas-dynamic discontinuities in hypersonic streams, in 
particular, shocks. The shock calculation is 
determination of its intensity, shock angle, stream turn 
angle on the shock, presence determination of relations 
between the basic gas-dynamic variables and their 
derivatives before the shock and behind it.  

At a given Mach number the dependence of the 
shock wave intensity on flow turning angle on it was 
called shock polar. For the characteristic shape of this 
function’s plot it is often called a heart-shaped curve. 
Since the shock polar is plotted for a given Mach 
number, it is called iso-mach. Gas-dynamic 
discontinuities may occur in smooth flow regions due to 
various physical phenomena. It may be shock waves, 
centered isentropic wave and detonation waves. For 
each of these physical processes their own dependence 
between density and pressure exists, which is called an 
adiabat. It is useful to be able to write the ratio of gas-
dynamic discontinuity in a form that would be 
independent of the physical processes leading to the 

field discontinuity in gas-dynamic variables. For this 
purpose, this study introduces the concept of 
generalized adiabat. Differential equations for the 
density and velocity potential describing the one-
dimensional unsteady motion of inviscid perfect 
isothermal gas were first introduced in 1788 in the book 
of Lagrange (1788). Poisson (1808) introduced the 
concept of the sonic speed when considering the 
propagation of a plane compression wave. 

 Stokes (1848) first introduced the concept of 
discontinuity in the field of a continuous environment 
flow and received two conditions for the density p ρ 
and velocity of the gas u on the sides of the 
discontinuity resulting from the laws of mass and 
momentum conservation. Earnshaw (1858, 1860) 
considered the one-dimensional unsteady gas flows, 
both isothermal and adiabatic. He obtained the solution 
in form of a plane wave, in which areas of sharp 
parameters changes occurs over time. He, same as 
Stokes, called them discontinuities. An important role 
in the analysis of gas-dynamic discontinuities, 
supersonic gas motions plays the speed of disturbances 
propagation-the sonic speed. 

Conditions, formulated by Stokes are insufficient 
to determine the two unknown parameters of the flow 
behind the discontinuity and the propagation speed the 
discontinuity itself. The first attempt to close the 
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equations system, written by Stokes was published in 
1860 in the work of Riemann (1860). In this study, the 
author suggested that during passing through normal 
discontinuity the entropy is constant and supplemented 
Stokes’ system with the third equation. In the 
meantime, Riemann (1860) couldn’t explain the 
changes in energy when passing through the 
discontinuity that occurred with this assumption. 

Independently of Riemann (1860) and Rankine 
(1869, 1870) obtained the third equation, 
supplementing the Stokes’ system in another form in 
1869-1870. He determined a link between the 
parameters on the sides of shock wave, having 
considered constantly changing state of the 
environment within it, in which the equilibrium heat 
exchange occurs. The total amount of heat obtained by 
the environment must be zero. Using the relations of 
equilibrium thermodynamics and the Stokes formula, 
Rankine (1869, 1970) obtained an expressions for the 
normal discontinuity propagation velocity in a 
stationary environment a (not to be confused with sonic 
velocity a) and for the flow rate in terms of known 
pressures in front of the discontinuity and behind it, as 
well as known relative volume before the discontinuity 
for a perfect gas.  

The most important Rankine’s result is the 
assertion that normal discontinuity always propagate 
with supersonic speed relatively to stationary 
environment with, while, relatively to the environment 
behind the discontinuity it is always subsonic. A 
method of obtaining DCC on a shock wave used by 
Rankine (1869, 1870) leads to the implementation of all 
conservation laws, but it takes into account the gas’ 
thermal conductivity and neglects its viscosity, which is 
very valid, because viscosity and thermal conductivity 
are interrelated. Hugoniot obtained the condition on 
normal discontinuity more strictly than Rankine, as a 
consequence of the law of energy conservation, 
avoiding consideration of the gas’ state "inside" of the 
shock wave (Hugoniot, 1889). This condition coincides 
with the previously obtained Rankine condition, but to 
obtain it Hugoniot didn’t require additional 
assumptions. Detailed analysis of gas-dynamic waves 
(isentropic expansion and compression waves) and 
oblique shocks arising in plane steady inviscid flows of 
non-conducting perfect gas was published in T. Mayer 
(1908). In the same paper the parameters of oblique 
shocks, formed around a plane acute angle were 
defined. This is an important task for the practice, since 
flow around an inclined barrier is one of the most 
common causes for a shock wave in the gas stream. 
Starting with this study of Mayer the shock wave 
intensity (the ratio between the static pressures on its 
sides) is considered as the main parameter 
characterizing it. In their modern form DDC at the 
shocks were formulated (Uskov, 1980). They were later 
developed for the case of one-dimensional traveling 
waves (Uskov, 2000) and for the oblique shock waves 

(Uskov et al., 2002). The research of heart-shaped 
curves, performed by Uskov et al. (1995) allowed to 
determine their important properties: the presence of 
the envelope, limiting deflection angles at the 
discontinuity, points corresponding to the 
discontinuities, behind which the Mach numbers equals 
to 1. It may be noted that the presence of the envelope 
is important in problems of supersonic aerodynamics 
(Uskov and Chernyshov, 2014) as it corresponds to 
pressure extremums on the sides of the body, flying 
with a predetermined angle attack, but at variable 
velocity. 

The problem is more than a hundred years old, but 
its solution still causes difficulties. The situation is 
getting more complicated, if it is required to find some 
optimal solution, i.e., to select from a series of possible 
realizations of the shock the unique one which meets 
the given optimal criterion.  

Relations describing the heart-shaped curves have 
long been known, but their use still often causes trouble 
due to computational traits and necessary selection 
from a variety of formal roots. Let us consider the laws 
giving relations on the discontinuities as well as the 
properties of shock polars. 
 

MATERIALS AND METHODS 

 
Gas-dynamic discontinuity image as features of 

reflection of projection of gas-dynamic parameters 

variety: Relations of variables �� and f on opposite sides 
of gas-dynamic discontinuities are produced from the 
Conditions of Dynamic Compatibility (CDC) on them. 
In the lab coordinate system, CDC on the stationary 
discontinuities are balances of specific streams. 
Substance: 
 

[ ] ˆ ˆ 0
n n n

ρυ ρυ ρυ= − =                                            (1) 

 
Normal: 
 

2 0np ρυ + =                                             (2) 

 
And the pulse tangent component: 
 

[ ] 0n τρυ υ =                                                          (3) 

 
The energy component: 
 

[ ]0 0
n
hρυ =                                            (4) 

 
where, υn and υτ projections of the velocity vector on 
the discontinuity plane. It follows from (1-4) that there 
are 2 kinds of discontinuities: tangent (τ, where υn = 0) 
and normal (shock) through which the gas flows. It 
follows from (2) that on the both sides τ the static 
pressure is the same and (3) shows that the tangent 
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components can differ, i.e., τ they can be slip lines. The 
density, temperature, full heat content and entropy of 
streams divided with tangent discontinuities can differ.  

The given system allows to simply receive the 
Laplace-Poisson adiabatic lines (isentropy): 
 

1JE γ =                                                                  (5) 
 
And Rankine-Hugoniot (shock adiabatic line): 
 

1 J
E

J

ε
ε

+
=

+
                                                            (6) 

 
where, ( 1) / ( 1)ε γ γ= − + , γ – the adiabatic line index, 

ˆ/E ρ ρ= , ˆ /J p p= -the intensity of the shockwave 

process (J>1) or rarefaction (J<1). 
The isentropic curve (1.5) is true for simple 

pressure waves (J>1) and rarefaction waves (J<1) 
stationary waves (Prandtl-Mayer) or running waves 
(Reimann). The shock adiabatic line appeared caused 
by modeling of shocks and shockwaves because of 
discontinuity surfaces. 

In the direct shocks relations �� and f are specified 
from the system (1-4), where velocity D is the velocity 
of the shock travel on the source stream having the 
velocity U: 

 

n U D aυ = − ≥                                            (7) 

 
Which transforms the given system CDC into the 

form of CDC-D: 
 

[ ] [ ]pu Dρ=                                                         (8) 

 

[ ] [ ]2p u D u Dρ ρ ρ + = =                                   
(9) 

 
[ ] [ ]0h u D=                                                        (10) 

 
At D = 0 the system (7-10) describes CDC on the 

direct shock, υτ = 0 in (3). 
From  (7)  and  (1.10)  it  follows  that  at  D = U  

(υn = 0) the value Û U= , i.e., [u] = 0 and there is a 
surface of the variables discontinuity which gas cannot 
flow through. Such discontinuity is contact one ( K ). It 

travels at the rate of gases Û U D= =  and divides the 
streams with different thermodynamic variable (except 

for statistic pressure P̂ P= , like on the tangent 
discontinuities). In consequence of the Clapeyron 
equations ( ˆ ˆˆp RT RTρ ρ= = ) for perfect gas ( ˆR R= ) on 

K  the following equtions in progress: 
 

ˆ
ˆˆ ,

ˆˆ
M a T

T T
M a T

ρ ρ= = −
 

So, the contact discontinuity is a special trajectory 
dividing the gases with different thermodynamic 
parameters (except for pressure). 

From CDC-D (10) it also follows that, as opposed 
to shocks on the shockwaves, there is a discontinuity of 
total heat content. The very direct shocks are particular 
cases of the standing shocks (D = 0) in the supersonic 
streams of gas. 
The oblique shock intensity (σ ): 
 

2
2 2 2(1 ) sin (1 ) sinJ M

a
σ

υ
ε σ ε ε σ ε = + − = + − 
 

�

   

(11) 

 
Depends on the normal component of the velocity
 

n
sinυ υ σ= . Here, σ is a shock angle of the velocity 

vector to the shock plane which can change within the 
limits of 90α σ≤ ≤ ° , where sin 1/ Mα =  is the Mach 
angle whereby the shock degenerates into the Mach line 
( 1Jσ = ). 

The maximum intensity meets the direct shock: 
 

2(1 )mJ Mε ε= + −                                          (12) 

 
Or direct shockwave: 
 

2

(1 )
U D

J
a

ε ε
− = + − 

 
                          (13) 

 
The values of J specify other gas-dynamic 

variables after discontinuities: density (with the help of 

shock adiabat) (6), temperature ( ˆ /T T EJ= ), acoustic 

speed ( ˆ /a a EJ= ). 
Braking parameters after these discontinuities can 

be specified with the help of the generalizing formula: 
 

1

1
0 0

0

0

p̂ H
J

p JE

γ γ

γ

−   
≡ =   

  
                                         (14) 

 

where, the value of 
0 0 0

ˆ /H h h=  
on the shock does not 

support the discontinuity on shocks and 
0 1H ≠  

on 

shockwaves. On shocks at H0 = 1, as it follows from 
(14), the loss factor of the total pressure: 
 

( )
1

1
0J JE γ γ

−
−=                                                   (15) 

 
Depends on the intensity with use of the shock 

adiabatic line Eq. (6). And is entropy (5) shows that in 
the Prandtl-Mayer stationary waves (��) the total 
pressure does not change. 
Using the function: 



Res. J. App

 
Fig. 1: Cardioform curves for the Mach numbers

1.25, 1.4, 1.67 (internal group of curves)
 

( ) 2
0

1
/ 1

2
M p p M

γ γ
γ

− −
− Π = = + 

 
 

It is easy to acquire the generalized
the Mach numbers on the discontinuity 
 

ˆ
EJ

µ
µ
=                                               

 
where, 2(1 ( 1)Mµ ε= + −  and (ˆ 1 1Mµ ε= + −

(16) allows to calculate the Mach numbers
depression waves �� and �� shocks. 

The stream turn angle on shocks 
by intensity Jσ  

and 
mJ :  

 
(1 )( 1)

(1 )( 1)m

J
tg ctg

J J

ε
β σ

ε ε
− −

=
+ − − −

                 

 
Here, 2 ( 1) / ( ) ( ) / ( )m m mctg J J E E Eσ ε ε= − + = − −

in coordinates { ln , }J βΛ ≡  formula (1

family of cordiform curves (Fig. 1). Another
a shock polar. The curve form depends
number of the incoming stream М1 (index
omitted, only М, Р is written, etc.) and 
index γ, equal to the relation of heat content
pressure cp to heat content at constant volume
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numbers = 1.5-5 and indexes of the adiabatic line γ = 1.1 (external
curves)

 
/ ( 1)γ γ− −

 
 
 

  

generalized formula linking 
 (wave): 

                                                             (16) 

)2ˆ1 1M= + − . Formula 

numbers after the 

 is also specified 

(1 )( 1)
                       (17) 

( 1) / ( ) ( ) / ( )m m mctg J J E E Eσ ε ε= − + = − −  

(17) describes the 

Another its name is 
depends on the Mach 

(index 1 is often 
 the gas adiabatic 

content at constant 
volume cv. 

Lower branches of cordiform
physical, as they meet the depression
not exist in nature.  

The study in Uskov and Mostovykh
curves allowed to specify the significant
these families: presence of an envelope,
the stream angularity on the discontinuity,
appropriate points, after which the
equal to 1. 

The relations describing cordiform
known for a long time, but they are
because of the computing specifics
solution selection according to the
consider the most friendly definition
shock calculation. 
 

Angular shock calculation method: 

point of view, the shock is specified
angle, when the supersonic stream
obstacle (Fig. 2 above), or by the 
P2/P1 at interaction of two supersonic
different pressure, for example, when
expanded (P1<P2) supersonic stream
from the nozzle. 

Angle shocks can appear 
interference of other gas-dynamic discontinuities
zero order and the first order: shocks,
centered  waves, discontinuity characteristics.

 

(external group of curves), 

cordiform curves are not 
depression shocks which do 

Mostovykh (2010) of these 
significant properties of 
envelope, limit angles of 

discontinuity, discontinuity 
the Mach number is 

cordiform curves are 
are still difficult in use 

specifics and necessity of 
the real shocks. Let`s 

definition of the angular 

Angular shock calculation method: From the physical 
specified by the stream turn 

stream flows onto an 
 relation of pressure 

supersonic streams with 
when flowing of over-

stream (Fig. 2 below) 

 as the result of 
discontinuities by the 
shocks, simple and 

characteristics. However, 
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Fig. 2: Formation of an angle shock when the stream is 
flowing onto the wall (above) and at interaction of two 
streams with different pressure (below) 

 

 
 
Fig. 3: Diagram of the stream before the angle shock and 

after it 
 
all these cases, from the point of view of the calculation 
method, come to the two abovementioned.  

The shock angle σ, its intensity J and the stream 
angle on the shock β (Fig. 3) at the flow specified 
parameters before the shock (M1, P1, P01, ρ) are 
mutually definitely connected to each other. 
Assignment of any of three parameters allows to 
calculate the two others. 

If we know the stream angle β, as in Fig. 2 (above), 
e.g., the wedge angle is assigned, which the supersonic 
stream goes onto, it is possible to calculate the intensity 
and angle of the angel shock under formation.  

Dependence of the shock intensity J on the stream 
turn angle β, obtained, for its characteristic appearance, 
the name of cordiform curves. 

It is comfortable to assign the shock polars in the 
parametric form, where the shock angle is used as a 
parameter σ. Actually, if to change it within limits 0- 
90°, one can easily calculate the shock intensity: 
 

2 2(1 ) sinJ Mε σ ε= + −  

 

where, � =  

��



�
 and the stream angle on the shock: 

 

(1 )( 1)

( ) (1 )( 1)
m

m

J J J
tg

J J J

ε
β

ε ε ε
− − −

=
+ + − − −

 

Recording of relations on the shock or shockwave 
with the help of generalized adiabatic line: If we 
know the intensity of shock and parameters before it, 
we can calculate all gas-dynamic variables after the 
shock. The intensity relation is specified by the 
Rankine-Hugoniot adiabatic line (6). 

It is comfortable with the help of (6) to write the 
relations for calculation of all key parameters of the 
shock and the following stream. In such a way, the 
stream angle can be written in the form: 
 

1 2

2 1

1
m

m

E
tg

E J J J

J J J

β
ε

ε

−
=

− +
+

+ −

                              (18) 

 
The Mach number after the shock is specified from 

the condition of total heat content (enthalpy) when 
travelling over the shock: 
 

2 2 2
2

2

( ) (1 )( 1) (1 )( 1)

(1 )

J M J M E J
M

J J EJ

ε ε
ε

+ − − − − − +
= =

+
   (19) 

 
Temperature rate: 
 

2 1
T

EJ J
T

θ ε= = +�                                          (20) 

 
The sonic speed: 
 

2a
EJ

a
=                                                        (21) 

 
Recovery factor of total pressure: 
 

1

102
0

0

( )
P

I E J
P

γ γ
−
−= =                                             (22) 

 
Written in such from relations (19-22) are true for 

any types of waves: Simple, shock and detonation ones. 
If we substitute the Laplace-Poisson adiabat equations 
(White, 1998) for E in the relation, we will obtain 
relations for simple and centered isentropic waves. If 
we insert adiabat Chapman-Jouget (Dremin, 1999), we 
will obtain the equations for detonation waves. All 
variables following the shock in Eq. (19)-(22) change 
monotonically dependently on the shock intensity J. 
 

RESULTS AND DISCUSSION 
 
Polar analysis: Even a few significant works have been 
dedicated to the polar analysis, it make sense to show 
here the relations for individual extreme characteristics 
important in practice (Uskov and Omelchenko, 1995, 
1997, 1998). Looking at the cordiform curves we can 
make a key conclusion. For every М and γ there is a 
limit angle β of the stream possible deviation by an 
angle shock. Consequently, the stream picture shown in 
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Fig. 4: Picture of the streamline if the wedge angle is more 

than the stream limit angle βl 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Dependence of the stream limit angle βl on the Mach 

number and adiabatic index γ = 1.1 (upper curve), 
1.25, 1.4, 1.67 (lower curve) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Dependence of the shock angle σl for the stream limit 

angle βl on the Mach number and the adiabatic index  
γ = 1.1 (upper curve), 1.25, 1.4, 1.67 (lower curve) 

 
Fig. 2 (below) is possible only for small wedge angles 
β. If is exceeds a limit value for this М, which is 
traditionally designated as β, a detached curved shock is 
formed (Fig. 4). The intensity of the shock which is 
able to turn the stream for the maximal angle is 
expressed by the relation: 
 

( ) ( )
22 2

22 2
1 2 1 2

2 2l

M M
J Mε

 − −
= + + + − + 

 

     (23) 

 
Inserting (23) into (18), we obtain the value of the 

limit angle of the stream turn: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7: Comparison of dependences Jе (βе) и Jl (βl) 
 

1 2

2 1

1

l
l

l m l l

l m l

E
tg

E J J J

J J J

β
ε

ε

−
=

− +
+

+ −
                       (24) 

 
The point on the cordioform curve meets Jl and 

divides the polar into two parts. The curve part lower 
this point meets the attached shocks. The curve part 
upper this point meets detached ones. The limit angle βl 
increases with increase of М (Fig. 5) and for M →∞  is 
equal to 48.58° for γ = 1.4. The shock angle σl, at which 
the stream limit angle βl is reached, depends on the 
Mach number non-monotonically (Fig. 6). 

The second singular point on the shock polar is 
associated with the concept of heart-shaped envelope 
curve bounding the region of a single shock wave’s 
existence on a plane βΛ − . The envelope can be found 

from the condition 
��

��
= 0: 

 
2 1eJ M= − , 1

( )
2

e

E
J arctg

E
β

− 
=  

 
              (25) 

 
where, ( )eE E J= - an expression of Rankine-

Hugoniotadiabat. 
From (25) we see that the envelope only exists for

2Μ≥ . Plots of flow’s rotation angle dependence at 
the shock polar’s point of tangency with the envelope 
of polars family are shown in Fig. 7. 
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If  the  pressure relation P2/P1, is assigned as in 
Fig. 2 (below), the intensity of shock J = P2/P1 is 
known. If P2/P1<Jm (M), than according to formula (1) 
one can calculate the shock angle σ and according to 
formula (2) -the stream angle β. If P2/P1>Jm (M), there 
is no solution for the angle shock, inside the nozzle a 
starting shock appears with the intensity and position 
making the pressure on the nozzle edge be equal to the 
environment pressure.  

Often, a practical problem arises how to brake the 
stream until the velocity lower than the sonic speed, 
therefore, it is useful to know how with the assigned М 
in the incoming stream to calculate the intensity of the 
shock after which М = 1: 
 

( )
22 2

21 1
1 1

2 2S

M M
J Mε

 − −
= + + − + 

 
           (26) 

 
The topical task is an inverse problem: calculation 

of the Mach number of the incoming stream according 
to the shock assigned intensity, when the stream 
following the shock gets sonic stream: 
 

2 1
1S

J
M

J ε
−

= +
+

                                         (27) 

 
CONCLUSION 

 
We have considered the calculation ways covering 

90% of practical problems connected to computation of 
shocks. In spite of blanket distribution of computational 
approaches in the gas dynamics in a series of 
applications, the topical problem is direct computation 
of shocks, especially if the optimal solution is needed. 
In numerous subject literature, the shock computation 
ways, as a rule, are given in the form which makes their 
application difficult for optimization and control of 
supersonic streamlines. The things are becoming more 
complicated because of the equations connected to the 
shock computation often have a few solutions, 
calculation specifics or, often, cannot be solved 
relatively to the desired variable. For selection of the 
solutions which meet physically realized shockwave 
configurations, obtaining the values around the special 
points, it is necessary to attract extra considerations. On 
the other hand, there is the minimal set of the important 
characteristics of the shocks for which it is possible to 
solve the computation problem in a friendly form. 
Knowledge of the special and limit parameters of 
shocks allows to easily divide the solutions into 
categories. This study covers such an approach 
allowing to easily solve 90% of key practical problems 
on computation of single angle shocks. 

Here are given the universal formulae to calculate 
the parameters after the shock recorded with the help of 
the generalized adiabat and applied also for simple 
waves and detonation waves (with use of proper 
expressions for the adiabatic line). These formulae 
allow calculating the shock parameters are you know 
even the only gas-dynamic variable following the 
shock. If you know parameters of the stream before the 
shock and the shock intensity, these equations allow 
computing  all  the  parameters  following  the  shock.  
The computation results for dependence of the 
significant shock characteristics on the Mach number 
and the stream adiabatic line index are given in a 
friendly form. 
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