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Abstract: The inverse Rayleigh distribution plays an important role in life test and reliability domain. The aim of 
this article is study the Bayes estimation of parameter of inverse Rayleigh distribution. Bayes estimators are 
obtained under squared error loss, LINEX loss and entropy loss functions on the basis of quasi-prior distribution. 
Comparisons in terms of risks with the estimators of parameter under three loss functions are also studied. Finally, a 
numerical example is used to illustrate the results. 
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INTRODUCTION 

 
The inverse Rayleigh distribution is one of the 

most important lifetime distributions. It has many 
applications in the area of reliability and life testing 
study. Voda (1972) mentioned that the distribution of 
lifetimes of several types of experimental units can be 
approximated by the inverse Rayleigh distribution. The 
statistical inference for the inverse Rayleigh distribution 
has drawn great attention by many authors. For 
example, Voda (1972) presented some properties of the 
maximum likelihood estimator, for inverse Rayleigh 
distribution, furthermore confidence intervals and tests 
of hypotheses are developed. Gharraph (1993) derived 
five measures of location for the inverse Rayleigh 
distribution, These measures are the mean, harmonic 
mean, geometric mean, mode and the median. Abdel-
Monem (2003) developed some estimation and 
prediction results for the inverse Rayleigh distribution. 
Al-Hussaini and Ahmed (2003) studied the Bayesian 
prediction bounds for the sth future record value. El-
Helbawy and Abd-El-Monem (2005) obtained Bayesian 
estimators and one and two sample predictions of the 
parameter of the inverse Rayleigh distribution under for 
different loss functions. Soliman et al. (2010) discussed 
the Bayes estimation and prediction for inverse 
Rayleigh distribution based on lower record values. 
Dey (2012) studied the Bayes estimation of the 
parameter of inverse Rayleigh distribution under 
squared error loss and LINEX loss functions. These 
articles have done good work on Rayleigh distribution, 
but how to choose the best Bayesian estimators is still 
not given. Thus, this article will discuss the Bayes 
estimation of the parameter of inverse Rayleigh 
distribution under three loss functions and will give a 
rule for the selection of best Bayes estimators. 

Suppose X is a random variable from inverse 
Rayleigh distribution if the probability density function 
is given by: 
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where, 0θ >  is unknown parameter. 

 
METHODOLOGY 

 
Maximum likelihood estimation: Suppose X1, X2,…, 
Xn 

are n samples from the inverse Rayleigh distribution 
(1) and x = (x1, x2,…, xn) 

is the observation of X = (X1, 
X2,…, Xn). The Likelihood Function (LF) is given by: 
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The maximum likelihood estimator of θ is easily 
derived as: 
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And it can be easily shown that � =  �
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distributed the Gamma distribution ),( 1−Γ θn . 

 
Bayes estimation: Suppose that some prior knowledge 
about the parameter θ is available to the investigation 
from past experience with the inverse Rayleigh model. 
The prior knowledge can often be summarized in terms 
of the so-called prior densities on parameter space of θ. 
For the situation where the experimenter has no prior 
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information about the parameter θ, one may use the 
quasi density as given by: 
 

1
( ; ) , 0, 0

d
d dπ θ θ

θ
∝ > >                              (4) 

 
Hence, d = 0 leads to a diffuse prior and 1=d  to a 

non-informative prior. 
In Bayesian estimation, an important element is the 

selection of a loss function ˆ( , )L θ θ , where θ̂  is a 

decision rule based on the data. The squared error loss 
as the most common symmetric loss function is widely 
used due to its great analysis properties. And the 
Squared Error Loss Function (SELF) is given as: 
 

2)ˆ(),ˆ( θθθθ −=L                                             (5) 

 
It is a symmetrical loss function that assigns equal 

losses to overestimation and underestimation. However, 
in many practical problems, Basu and Ebrahimi (1992) 
pointed that overestimation and underestimation will 
make different consequents. Thus using of the 
symmetric loss function may be inappropriate and to 
overcome this difficulty, many asymmetric loss 
functions are put forward. The LINEX loss is one of the 
most used. 
 

The LINEX loss function: Varian (1975) proposed an 
asymmetric loss function known as the LINEX loss 
function and Zellner (1986) applied it to Bayes 
estimation and prediction problems. The LINEX loss 
function is suitable for situations where overestimation 
is more costly than underestimation. When estimating a 

parameter θ by ��, the LINEX is given by Basu and 
Ebrahimi (1992). 
 

0,1)( ≠−∆−=∆ ∆ aaeL a                                  (6) 

 

where ∆ =  
��

�
− 1. The Bayes estimator of θ, denoted by 

���� under the LINEX loss function is given by the 
equation: 
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Provide that the posterior  expectation  )(⋅πE
  

in  

Eq. (7) exists and is finite. 
 
The entropy loss function: In many practical 
situations, it appears to be more suitable to express the 

loss in terms of the ratio θθ /ˆ . In this case, Dey et al. 

(1987) pointed out that a useful asymmetric loss 
function is entropy loss function: 
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Whose minimum occurs at θθ =ˆ . Also, this loss 

function has been used in Dey and Liu (1992) and 
Calabria and Pulcini (1994). The Bayes estimator under 

the entropy loss is denoted by ���� , given by: 
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Eπθ θ − −=                                                    (9) 

 
Combining (2) with quasi-prior (4) using Bayes 

theorem, the posterior pdf of θ is given by: 
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Then: 
 

• The Bayes estimator under the squared error loss 
function is given by: 

  

2,
2
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• Using (10), the Bayes estimator under the LINEX 
loss function is come out to be: 
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• Using (12), the Bayes estimator under the entropy 
loss function is obtained as: 
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Risk function: The risk functions of the estimators 

BLBS θθ ˆ,ˆ
 
and 

BEθ̂  relative to Squared error loss (5) are 

denoted by ˆ( )BSR θ , ˆ( )
BL

R θ  and )ˆ( BER θ , respectively, 

are can be easily shown as: 
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Figure 1 to 4 have plotted the ratio of the risk 

functions to θ
2
, i.e.: 
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Fig. 1: Ratio of the risk functions with n = 10 

 

 
 

Fig. 2: Ratio of the risk functions with n = 20 

 

 
 

Fig. 3: Ratio of the risk functions with n = 50 

 

From Fig. 1 to 4, it is clear that no of the estimators 

uniformly dominates any other. Therefore these 

estimators can be chosen according to the value of d 

when   the   quasi-prior   density   is   used  as  the  prior  

 
 

Fig. 4: Ratio of the risk functions with n = 100 

 

distribution and this choice in return depends on the 

situation at hand. But when n is large (n>50), the three 

ratios of the risk functions are almost equal, so when 

the sample size is large, any estimator can be chosen for 

practical use. 

 

EMPIRICAL STUDY 

 

In this section, a Monte Carlo simulation is used to 

compare the estimators obtained in this study. The 

MLE, Bayes estimators of the parameter θ are 

computed according to the following steps: 

 

Step 1: For given values of θ, a sample of size n is then 

generated from the density of the inverse 

Rayleigh distribution (1), which is considered 

to be the informative sample. 

Step 2: The MLE and Bayes estimators is calculated 

based on above section. 

Step 3: Steps1-2 are repeated 1000 times and the risks 

under squared-error loss of the estimates, noted 

by ER, are computed by using: 
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where, 
iθ̂  is the estimate at the i

th 
run. 

Numerical simulation expressed in Table 1 shows 

that though under small sample sizes, the risks under 

squared-error loss of the estimates have big differences, 

but when the sample sizes are large (n>50), they are 

almost equal, thus any of the three Bayes estimators be 

chosen in practical application. 

 

CONCLUSION 

 

The inverse Rayleigh distribution plays an 

important role in life test and reliability domain. Thus 
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Table 1: Estimated value (Estimated Risk (ER)) for different sample sizes  

n  θ��� 

d = 1.0, a = 1.0 

-------------------------------------------------------------------- 

d = 1.5, a = 1.0 

------------------------------------------------------------- 

θ��� θ��� θ��� θ��� θ��� θ��� 

20 0.9942 

(0.0500) 

1.0465 

(0.0575) 

0.9246 

(0.0489) 

0.9942 

(0.0500) 

1.0197 

(0.0530) 

0.9036 

(0.0506) 

0.9699 

(0.0485) 
30 1.0076 

(0.0326) 

1.0424 

(0.0366) 

0.9596 

(0.0311) 

1.0076 

(0.0326) 

1.0247 

(0.0342) 

0.9446 

(0.0316) 

0.9911 

(0.0315) 

40 1.0037 
(0.0252) 

1.0215 
(0.0273) 

0.9674 
(0.0244) 

1.0037 
(0.0252) 

1.0164 
(0.0261) 

0.9559 
(0.0248) 

0.9913 
(0.0246) 

50 1.0000 

(0.0191) 

1.0204 

(0.0203) 

0.9709 

(0.0189) 

1.0000 

(0.0191) 

1.0101 

(0.0196) 

0.9605 

(0.0192) 

0.9901 

(0.0183) 
75 0.9999 

(0.0129) 

1.0134 

(0.0134) 

0.9803 

(0.0128) 

0.9999 

(0.0129) 

1.0066 

(0.0131) 

0.9739 

(0.0129) 

0.9933 

(0.0128) 

100 0.9939 
(0.0096) 

1.0040 
(0.0100) 

0.9792 
(0.0099) 

0.9939 
(0.0098) 

0.9989 
(0.0098) 

0.9744 
(0.0100) 

0.9890 
(0.0098) 

150 0.9945 

(0.0066) 

1.0012 

(0.0067) 

0.9846 

(0.0067) 

0.9945 

(0.0066) 

0.9978 

(0.0066) 

0.9814 

(0.0067) 

0.9912 

(0.0066) 
200 0.9984 

(0.0051) 

1.0034 

(0.0051) 

0.9909 

(0.0051) 

0.9984 

(0.0051) 

1.0009 

(0.0051) 

0.9885 

(0.0051) 

0.9959 

(0.0051) 

 
this article studied the Bayes estimation of parameter of 
inverse Rayleigh distribution. Three Bayes estimators 
are obtained under squared error loss, LINEX loss and 
entropy loss functions. The best Bayes estimator are 
chosen by comparisons in terms of risks with the 
estimators and numerical simulation are also shown that 
when the sample sizes are large (n>50), these 
estimators are almost equal, thus any of the three Bayes 
estimators be chosen in practical application. The result 
can also used other distributions, such as exponential, 
Weibull, Rayleigh distributions. 
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