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Abstract: Most of the real world multi-objective problems demand us to choose one Pareto optimal solution out of a 
finite set of choices. Flexible job shop scheduling problem is one such problem whose solutions are required to be 
selected from a discrete solution space. In this study we have designed a hybrid genetic algorithm to solve this 
scheduling problem. Hybrid genetic algorithms combine both the aspects of the search, exploration and exploitation 
of the search space. Proposed algorithm, Hybrid GA with Discrete Local Search, performs global search through the 
GA and exploits the locality through discrete local search. Proposed hybrid algorithm not only has the ability to 
generate Pareto optimal solutions and also identifies them with less computation. Five different benchmark test 
instances are used to evaluate the performance of the proposed algorithm. Results observed shown that the proposed 
algorithm has produced the known Pareto optimal solutions through exploration and exploitation of the search space 
with less number of functional evaluations. 
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INTRODUCTION 
 

Optimization problem is characterized by one or 
more functional objectives and is associated with a 
solution space. The idea is to identify Pareto optimal 
solutions from the solution space by either maximizing 
or minimizing the given objectives. These problems are 
classified as continuous and discrete with respect to the 
type of information available in the solution space as 
continuous real values or discrete finite values. 
Complex continuous optimization problems can be 
solved by computing the derivatives whereas the 
discrete optimizations require choosing an optimal 
value from fixed set of solutions (Neumann and Witt, 
2010). Discrete optimization problems are 
computationally hard to solve and are mostly NP-hard 
problems. Applications like project scheduling, 
production scheduling, man power planning, vehicle 
outing, telecommunication routing, production facilities 
design, job Scheduling, space shuttle scheduling, 
database query design are few of such discrete 
combinatorial optimization problems (Du and Panos, 
1999; Yu, 1998). 

Flexible Job Shop Scheduling Problem (FJSSP) is 
a popular combinatorial (discrete) optimization problem 
(Jain and Meeran, 1999). This problem is characterized 
with n jobs and m machines, where each job will have 
several levels of operations. Only when all the 
operations of a job are completed, the job is said to be 
completed. Operations of one job can be assigned to 

any machine and the machine has the capability to 
complete it, hence the problem is named as flexible  job 
shop scheduling. The FJSSP has to deal with the 
operation sequencing and machine assignment to 
complete the jobs. 
 
Problem formulation: The multi-objective FJSSP is 
formulated as follows (Chiang and Lin, 2013; Ho et al., 
2007): 
 
 There are n jobs and m machines. 
 Each job j, will have nj operations, where 0≤ j≤n, in 

a predetermined sequence. 
 Operation Oji of job j has to be processed by the 

machine mji from the set of machines Mji. 
 A priori known constant processing time of Oji in 

machine k ∈Mji is Pjik and Cij is its completion time. 
An operation Oji is taken for processing only when 
its preceding operation O(j-1)i of same job is 
completed, where 0≤i≤nj. 

 Each machine can process one operation at a time 
without interruption. 

 All jobs are ready at time 0 and all machines are 
continuously available. 

 
The three minimizing objectives considered in this 

work are makespan, total work load and maximum 
work load. Makespan is the time taken to complete all 
jobs, total work load is the total time taken by all the 
machines to complete the jobs and maximum work load 
is the machine with the largest work load. The set of 
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operations processed by machine k is given by Ok 
where 1≤k≤m, Ok = {oji|mji = k, 1≤ j≤n, 1≤i≤nj}. The 
functional objectives are given by: 

 
Makespan (CM): ଵ݂ ൌ ݔܽ݉

ሼୀଵ…ሽ
 ೕܥ

 

Total work load (WT): ଶ݂ ൌ   ܲ


ைೕ∈ைೖ



ୀଵ
  

 
Maximum work load (WM): 

ଷ݂ ൌ ݔܽ݉
ሼୀଵ…ሽ

 ܲ


ைೕ∈ைೖ 	
  

 
The aim of this study is to generate Pareto optimal 

schedules that minimize the above three objectives. 
 
Memetic/hybrid GA: FJSSP is a multi-objective 
optimization problem with more than one conflicting 
objectives. When such problems are solved there will 
not be a single unique solution instead, a set of optimal 
solutions that are superior to other solutions in the 
search space is required. Evolutionary Algorithm (EA) 
is a stochastic optimization approach that works with a 
population of individuals to optimize multiple 
objectives simultaneously. Genetic Algorithm (GA) is a 
kind of evolutionary algorithm that is inspired by 
natural selection. EA or GA in specific is designed to 
explore the search space globally and said to lack in 
fine tuning of individuals that is, in exploiting the 
search space (Krasnogor and Smith, 2005). To 
overcome this known drawback of EA, it can be 
combined with other optimization techniques to 
enhance the exploitation of the search space. A hybrid 
or Memetic algorithm (Moscato, 1989) is the 
combination of a global and a local optimization 
technique. Several hybrid algorithms have been 
designed and are used to solve continuous multi 
objective optimization problems. In this study we have 
designed a hybrid algorithm for a discrete problem like 
FJSSP, where the hybrid approach combines a global 
search and local search technique together. The 
objective of this hybrid algorithm is to optimize the 
three objectives of FJSSP and to generate a schedule of 
n jobs in m machines in an optimal manner. 
 

LITERATURE REVIEW 
 
Discrete optimization techniques: Branch and bound, 
rounding-off, penalty function approach, cutting plane, 
simulated annealing, genetic algorithms, neural 
networks, Langragian relaxation methods are some of 
the discrete optimization algorithms (Mahfouz, 1999). 
Algorithms like GA based approaches can also work 
with continuous problems and are hence considered to 
be adaptable. We have used GA in the proposed work 
because of its versatility and tendency to get integrated 
with other optimization techniques. 

Review on approaches used to solve multi objective 
FJSSP: Kacem et al. (2002a) has applied two 
approaches, approach by localization, that designs an 
ideal assignment model for jobs and controlled 
evolutionary approach that work upon the assignment 
made already. Kacem et al. (2002b) has proposed a 
hybrid method that combines EA with fuzzy logic to 
solve FJSSP. This hybrid approach was designed to 
work in two stages, a fuzzy multi-objective evaluation 
stage and an evolutionary multi-objective optimization 
stage. Several test instances were used to evaluate his 
approach. Li-Ning et al. (2010) has adopted a two level 
strategy to solve FJSSP, knowledge model and heuristic 
model. Heuristic model performs the global search 
using Ant colony optimization, whereas the knowledge 
model learns from optimization and use them to guide 
the current searching. 

Ho and Tay (2008) have combined GA with guided 
local search to schedule the optimization problem. A 
branch and bound has also been used to find the lower 
bounds of this multi-objective problem. Li et al. (2011) 
has proposed a hybrid Pareto based Artificial Bee 
Colony algorithm, where a food source represents both 
the routing and scheduling component of the schedule. 
Local search was applied both on the routing 
component and scheduling component of the food 
source. Local search is performed in this algorithm 
during the employed bee phase. Wang et al. (2010) 
introduced an improved GA based immune and entropy 
approach to solve multi-objective FJSSP, where two 
principles immune, entropy are used to generate diverse 
set of solutions and designed to avoid premature 
convergence. Antibodies are considered as the 
individuals and antigens are the objectives to be 
improved. Li et al. (2010) has designed a new hybrid 
search algorithm HTSA, which performs a Tabu search 
to explore neighbouring individuals on the machine 
assignment module. Variable neighbourhood search is 
also applied to perform local search on operation 
scheduling component. 
 

MATERIALS AND METHODS 
 
Proposed algorithm: Hybrid GA with DLS for 
FJSSP: A new hybrid Genetic algorithm has been 
devised to handle the discrete optimization problem, 
FJSS. This hybrid approach incorporates both global 
and local search together in-order to improve the 
quality of the individual. Aim of this algorithm is to 
schedule n jobs and m machines in a flexible manner so 
that the makespan, total work load and maximum work 
load are minimized in lesser number of functional 
evaluations. Hybrid GA for FJSSP is given in 
Algorithm 1. Proposed algorithm has been adapted 
from NSGA-II. 
 
Initialization: Population is initialized with individual 
chromosomes.  In  this  study  3-tuple encoding method  
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Fig. 1: Three-tuple chromosome encoding 
 
has been used where both the routing and sequencing 
data are encoded in the same gene. A gene has 3-tuple 
in  it  as  (j i k) denoting the operation Oji is assigned  to 
the machine k. Operations of jobs are assigned to 
machines in the order it has been encoded in the 
chromosome. For instance in the sample chromosome 
in Fig. 1. There are 4 jobs and are assigned to 5 
machines, where tuple (0 0 4) is the first operation to be 
processed that is, 0th operation of job 0 is assigned to 
machine 4. (0th) operation of job 2 is assigned to 
machine 2 and so on. A chromosome encodes all the 
operations of all the jobs to be completed. 
 
Re-sequencing: After encoding, the individuals are 
decoded by Giffler Thomson method. This method 
avoids unnecessary delays by re-ordering the genes of 
the chromosomes. After GT, re-ordered chromosomes 
are considered to be active schedules once the GT re-
ordering is over, the chromosomes are re-sequenced 
using two prominent methods and Most Operation 
Remaining (MOR) and Most Processing time 
Remaining (MPR). MOR arranges the operations in the 
chromosome with respect to number of pending 
operations of the same job, whereas the MPR, places 
the operations with respect to the amount of remaining 
processing time required by the job to be completed. 
The proposed algorithm used 40% of population to 
follow the MOR, 40% of MPR and remaining followed  
the  random  dispatching  of  jobs (Pezzella  et  al., 
2008). 

Evaluation step computes the three functional 
objectives, makespan, total work load and maximum 
work load. Non dominated sorting is applied to arrange 
the individuals in non-domination order and assign 
fronts for each individual in the population. To generate 
wide spread Pareto solutions, individuals from less 
crowded region of search space are given significance 
during the evolution, for which the crowding distance is 
calculated. This gives the distance of an individual from 
its neighbouring individuals. Binary tournament 
selection is applied to select the parents for crossover 
operation. For the crossover, three different crossovers 
are applied in the proposed algorithm. They are 
Simulated Binary Crossover (SBX), Assignment 
Crossover (ASX) and Precedence Preserving Order 
based Crossover (POX). Randomly any one of the three 
crossovers is applied on the selected parent 
chromosomes to generate a new offspring. Polynomial 
mutation is used if SBX is the crossover operator 
otherwise Precedence Preserving Shift (PPS) mutation 
is applied on the chromosome. 
 
Discrete local search: This search is designed to 
improve the solution quality yielded by global search in 
less number of functional evaluations. It starts with an 
individual and examines the individuals at its locality 

and picks the best in it. The locality or the 
neighbourhood space in this problem is defined by the 
number of machines. 
 
Neighbourhood individual selection: An operation i 
of job j which is assigned to machine k, is taken as the 
starting point, its neighbourhood will be k*= {k* ≠ k|1, 
2... m}, where m is the number of machines. Criterion 
that is used to choose the next step is the processing 
time. The neighbour individual is selected if its 
processing time is less when compared with others. In 
real time, it is equivalent to releasing the operation i of 
job j from machine k to another machine k* which can 
quickly finish this operation. A reassignment of one 
operation of one job to a new machine in discrete space 
creates a new offspring. There are NOP, number of 
operations encoded in a single chromosome and hence 
NOP number of new offspring can be created through 
this DLS. By this reassignment scheme the discrete 
space is exploited in a finer manner to obtain the best 
locally optimal solution.  
 
Individual evaluation in LS: To evaluate the new 
offspring that is generated, it has to be evaluated and 
need to be compared with its previous point in the local 
search. Three functional objectives of this new 
offspring say, makespan, total work load and maximum 
work load are computed. We have used the adaptive 
weighted sum approach to combine these three 
functional objectives into single objective, (Bhuvana 
and Aravindan, 2011). Weights are associated with the 
objectives to characterize the significance of each 
objective. Higher the weight greater significance will be 
given to that objective. This adaptive weight strategy 
collects the knowledge about the significance of 
objectives from the objective space itself. Single 
objective function is constructed using this adaptive 
weights method and the individual is evaluated. This 
new single functional objective is compared with the 
single objective of the starting or previous point in the 
local search space. If new individual is better than its 
parent individual, it will be allowed to replace it. 
 
Depth of DLS: To achieve a balanced exploration and 
exploitation, we decided to depth limit the local search. 
The depth of DLS is limited to single step, so that the 
time spent in local search will not add burden to the 
overall search process. DLS is also designed to stop 
investigating its locality whenever it finds the first local 
minimum. This has the advantage in reducing the 
number of functional evaluations incurred in visiting 
the neighbourhood individuals in its locality. Working 
of DLS is presented in Algorithm 3. 
 
Algorithm 1: Hybrid algorithm for flexible job shop 
schedule problem  
 procedure MADLS 
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Input: number of jobs, number of machines, 
number of operations per job, processing time 
for each operation  

 Output: schedule of jobs  
Encode each individual in population of size, 
PopSize. 
Call Re-sequenceing-Individual() on initial 
population 

 Compute fitness of each individual. 
  while Stopping criteria not met do 

Apply non dominated sorting and compute 
front 

 Compute crowding distance  
 Apply binary tournament selection 

Apply crossover on selected parents using 
one of following; 

 SBX (); ASX (); POX () 
Apply Polynomial mutation if crossover is 
by SBX () otherwise apply PPS mutation 

 for m1, PopSize do  
 Apply discrete-local-search (Offspringm) 
 end for 
 Add the offspring to the population  
 end while  
 end procedure  
 
Algorithm 2: Algorithm to modify the encoded 
sequence 

Procedure RE-SEQUENING-INDIVIDUAL () 

 Input: Number of jobs, number of machines, 
number of operations per job, processing time 
for each operation  
Output: Re-sequenced initial schedule  
Apply Giffler Thomson algorithm  
Apply Most Operations Remaining (MOR); 
Apply Most Processing time Remaining 
(MPR); 

end procedure 
 
Algorithm 3: Algorithm to perform Discrete Local 
Search (DLS) 
 procedure DISCRETE-LOCAL-SEARCH (Om) 
 Input: Offspring after crossover, Om. 
 Output: New offspring after local search  
 Compute adaptive weights for the objectives of 

Om. 
 Construct signal objective FOm using adaptive 

weights. 
 for n1. Nop do ⊳ Nop, number of operations in 

chromosome. 
Redirect operation i of jobs j of gene n from 
machine k, to other machine k*   

 where k* = {argmin (Pijk)k*  k}, 0jn; 
0km; 
⊳ n is the number of jobs, m is number of 
machines.  

Generate a new offspring Onew by inserting the 
new gene in place of actual. 

   Evaluate the new offspring Onew. 
 Compute adaptive weights and new single 

objective Fnew, for offspringnew. 
  if Fnew is better than Fom then   
 Replace actual individual, Om by one step 

locally optimized new individual, Onew. 
            return (Onew). 
    end if 
     end for 
     end procedure   
 

Once the local search on all offspring is over, the 
new offspring set is merged with the parent population 
and the steps are repeated until the termination 
condition is met. Working of Hybrid GA with DLS for 
FJSSP is given in Algorithm 1. 
 
Materials: Test cases to evaluate the performance of 
the proposed hybrid GA with DLS are taken from 
Kacem et al. (2002a, b). There are totally five test 
cases, 4×5, 8×8, 10×7, 10×10 and 15×10. Test data has 
number of jobs, number of machines, number of 
operations per job and processing time for each 
operation in each machine. Pareto optimal solutions   
for these test cases are available in 
http://web.ntnu.edu.tw/~tcchiang/publications/IJPE201
3-MOFJSP.txt. 
 

RESULTS AND DISCUSSION 
 
Experiments conducted: The Hybrid GA with DLS 
for FJSSP was implemented in C programming 
language in Intel (R) Core (TM) i5-3470 CPU @3.20 
GHZ system. Population size is set to 50 and the hybrid 
GA with DLS was made to run for 30 iterations with 
single step local search on the offspring. Crossover 
probability is 1 and Mutation probability is set to 
(1/Number of Operations). We have compared our 
results with that of other works;  MOEA-GLS by  Ho  
et al., (2007), PHMOEA by Nagamani et al. (2013), 
HTSA by Li et al. (2010), P-DABC by Li et al. (2011),  
AdRep  by   Unachak and Goodman (2010),   MOGA  
by  Wang et al. (2010).  

Totally five test instances are taken to evaluate the 
performance of the hybrid GA with DLS. The 
performance criteria we have taken for evaluation is the 
number of new individuals evaluated totally. Since the 
DLS is designed to stop whenever it first meets the 
local minimum, the upper bound for this criterion is the 
product of population size, number of operations and 
number of iterations. Table 1 to 5 present the functional 
objectives obtained by the proposed hybrid GA with 
DLS and compared with the already known works in 
literature. 
 
Case I: 45: The first test instance taken from Kacem 
et al. (2002a, b) has 4 jobs with 12 operations to be 
scheduled in 4 machines. Proposed hybrid GA with 
DLS was able to identify all the four known Pareto
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Table 1: Pareto optimal solutions for 45 

Problem instance 45 
Number of new 
individuals evaluated

Optimal solutions obtained
-------------------------------------------------------------------------------------------------
Makespan (CM) Total work load (WT) Maximum workload (WM)

MOEA-GLS 40000 16 32 8 
  16 33 7 
PHMOEA 20000 13 33 7 
  12 32 8 
P-DABC 90000 11 32 10 
  12 32 8 
  13 33 7 
MOGA 40000 11 32 10 
  11 34 9 
  12 32 8 
HTSA 24000 11 32 10 
  12 32 8 
Proposed 18000 11 32 10 
  12 32 8 
  13 33 7 
  11 34 9 
  
Table 2: Pareto optimal solutions for 88 

Problem instance 88 
Number of new 
individuals evaluated 

Optimal solutions obtained 
-------------------------------------------------------------------------------------------------
Makespan (CM) Total work load (WT) Maximum workload  (WM)

MOEA-GLS 40000 11 73 10 
PHMOEA 50000 14 78 11 
  14 73 12 
P-DABC 51200 14 77 12 
  15 75 12 
  16 73 13 
AdRep 40000 14 77 12 
  15 75 12 
  16 73 13 
  16 77 11 
MOGA 40000 15 81 11 
  15 75 12 
  16 73 13 
Proposed 30258 14 77 12 
  15 75 12 
 
Table 3: Pareto optimal solutions for 107 

Problem instance 107 
Number of new 
individuals evaluated 

Optimal solutions obtained
-------------------------------------------------------------------------------------------------
Makespan (CM) Total work load (WT) Maximum workload (WM)

MOEA-GLS 40000 15 61 11 
  16 60 12 
  15 62 10 
P-DABC 59500 12 11 12 
  61 63 60 
  11 11 12 
HTSA 196000 11 61 11 
  11 62 10 
Proposed 35505 11 62 10 
  11 61 11 

 
optimal solutions reported earlier in literature so far. 
These Pareto optimal solutions are obtained in lesser 
number of functional evaluations when compared with 
the rest of the algorithms compared. Lesser the number 
of functional evaluations faster will be the response of 
the algorithm. 
 
Case II: 8×8: The second test instance taken has 8 jobs 
with 27 operations to be scheduled in 8 machines. The 
obtained Pareto optimal solutions are listed in Table 2. 
Gantt chart for one Pareto optimal solution is shown in 
Fig. 2. 

Case III: 10×7: The third test instance has 10 jobs with 
29 operations to be scheduled in 7 machines. Our 
proposed algorithm, Hybrid GA with DLS has 
generated two schedules whose makespan is 11 with a 
total work load of 62, 61 and maximum work load as 10 
and 11. 
 
Case IV: 10×10: The next test case taken has 10 jobs 
and 10 machines with overall 30 operations to be 
scheduled. Our Proposed algorithm was able generate 
three optimal schedules. Functional objectives are listed 
in Table 4 for this test instance. 

Table 4: Pareto optimal solutions for 1010 
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Problem instance 1010 
Number of new  
individuals evaluated

Optimal solutions obtained
-----------------------------------------------------------------------------------------------
Makespan (CM) Total work load (WT) Maximum workload (WM)

MOEA-GLS 40000 8 41 7 
  8 42 5 
  7 43 5 
  7 42 6 
PHMOEA 250000 7 43 5 
  8 42 5 
P-DABC 100000 8 41 7 
  7 43 5 
  8 42 5 
AdRep 3000000 7 42 6 
  7 45 5 
  8 41 7 
  8 42 5 
MOGA 40000 8 42 5 
  8 41 7 
  7 42 6 
  7 45 5 
HTSA 300000 7 42 6 
  7 43 5 
  8 42 5 
Proposed 31307 8 41 7 
  8 43 5 
  7 42 6 
 
Table 5: Pareto optimal solutions for 1510 

Problem instance 1510 
Number of new  
individuals evaluated

Optimal solutions obtained
-----------------------------------------------------------------------------------------------
Makespan (CM) Total work load (WT) Maximum workload (WM)

MOEA-GLS 40000 11 91 11 
  11 93 10 
PHMOEA 300000 11 91 11 
  11 93 10 
AdRep 5600000 11 91 11 
  11 93 10 
MOGA 40000 11 91 11 
  11 98 10 
  12 95 10 
HTSA 810000 11 91 11 
  11 93 10 
Proposed 84000 11 91 11 
  12 95 11 
 

 
 
Fig. 2: Gantt chart for the test instance 8×8 
Case V: 15×10: This test instance is larger than any 
other instance taken here and has 15 jobs with a total of 
56 operations to be scheduled in 10 machines. Our 

hybrid GA with DLS for FJSSP was able to get optimal 
makespan of 11 and total work load 91 and maximum 
work load as 11. 
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CONCLUSION 
 

In this study, we have introduced a Hybrid GA 
with Discrete Local Search (DLS) for Flexible Job 
Shop Scheduling Problem. The objective of the study is 
to design a local search that exploits the discrete 
solution space with less number of functional 
evaluations. We have designed a new problem specific 
Discrete Local search which is combined with the 
genetic algorithm that performs the global search. By 
this integration, the solution space is explored and 
exploited in the balanced manner. 

We have compared the proposed algorithm with 
the other known works in the recent literature. 
Performance criterion taken by this study is the number 
of new individuals entered the population after 
evaluation. By this criterion, the results clearly show 
that our proposed algorithm has the ability to generate 
the optimal schedules in less number of functional 
evaluations. In this study the new Discrete Local search 
is combined with a Genetic algorithm, but DLS can be 
integrated with any other global optimization algorithm 
like ACO, PSO, ABC and so on. This study can be 
further extended by adding explicit features to reduce 
the burden of overloaded machines, etc., in DLS and its 
performance can be studied. 
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