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Abstract: The real-time system should guarantee that all critical timing constraints will be met in advance. Many 
distributed systems such as a cloud environment have a nondeterministic structure and it would cause a serious 
problem for real time, but the user can access a large number of shared resources. Also launching a new resource in 
the IaaS layer of a Cloud is not instantaneous. Prediction model, risk management in PaaS and monitoring in IaaS 
are the most important parts that a real-time system should have because they must face a challenge in 
understanding the system and the behavior of workload completely. The results of analyzing, monitoring and 
prediction have serious impacts on system reaction. Understanding the workload is an important challenge in all 
systems and they use different models to identify the types or predict changes over the time. A prediction model 
must have the ability to produce and shape the pattern of workloads with low overhead. In this study, we propose an 
enhancement for profiling process with continues Markov chain to make hosts deterministic for users. The 
effectiveness and the accuracy of the proposed model measured in the evolution part. Also, the number of the failed 
tasks counted in this new model to show how proposed model is successful. 
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INTRODUCTION 

 
In Cloud, a user has an opportunity to access a 

large number of resources. However, these resources 
are often shared with other users and many of the 
available resources are greatly over time (Bible et al., 
year). Also, the delay in IaaS layer for resource 
initializing may cause a failure or system delay during a 
process. The system could apparently work well in a 
period, but it could collapse in certain rare, but possible 
situations (Bible et al., year). The general structure of 
Cloud environment is depicted in Fig. 1. If all the 
critical time constraints cannot be verified, it could 
collapse because scheduling algorithm in core system 
layer in cloud system does not include specific 
mechanisms for handling real-time tasks (Wang, 2012). 
For programs that are running in a cloud, resource 
provisioning is one of the key issues. Allocating 
resources far beyond the request have a negative effect 
on cost and utilization for users and may cause over 
provisioning problem for providers. Also, allocating 
resources less than the request have a major impact on 
system delay and task failure. This means, in order to 
maximize the application performance, the user must 
carefully select a subset of the resources and schedule 

the application to run on these resources before an 
application is launched to run in the cloud, Dynamic 
resource scaling is one of the key characteristics that 
distinguish the Cloud systems from the traditional 
computing hosts (Kusic and Kandasamy, 2007). 

Initialization time for a new virtual instance in 
PaaS layer of the Cloud is not immediate and it has 
several minutes delay for hardware resource allocation 
in IaaS layer hosting platforms. The perspective of the 
current technologies showed reduction of VM 
initialization time is possible (Islam et al., 2012). Some 
technologies like streaming VM allows the customer to 
preview the VM before it is completely ready. The 
simple solution is to ask all the customers to determine 
future VM requests, so the cloud service provider in the 
SaaS layer can prepare all the VMs on time. However, 
it seems impossible because first, The customers have 
no duty to propose their schedule. Second, the 
customers, are unable to know when the computing 
resources are needed. Third, the combination of 
customers, is always changing. Fourth, the actual 
schedule may change at any time (Jiang et al., 2011). In 
the researchers of this study’s view, there is only one 
solution for overcoming the technology limitations and 
user   constraint   satisfaction   and   it  is  to  predict the  
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Fig. 1: General structure of cloud environment 
 
demands and prepare the VMs in advance. Predicting 
and monitoring the user's demand is a fundamental 
issue when tasks are running on a virtualized system 
(Jiang et al., 2011).  

Performance analysis and prediction model need a 
potent understanding of the system. This is mainly 
because, the real-time control completely depends on 
sensory input data and environmental conditions. The 
system must be analyzable to achieve a desired level of 
performance and predict the consequences in the 
workload such as burstiness. Because, a workload has a 
critical impact on resource provisioning and 
performance of the cloud-based applications. Most of 
the predictors and performance analyzers face a 
challenge to understand workload completely and 
model them. They use different techniques to identify 
the type of a workload and predict the changes in that 
type over the time (Yin et al., 2014; Elnaffar and 
Martin, 2009). 

In this study, we will make the following important 
objectives. In the first step we clearly introduce real-
time workload characteristics and constraints, besides 
we explain, how to find the pattern of workload. In next 
step we use the pattern to introduce the prototype 
implementation of our model for performing real-time 
tasks in Cloud. 

MATERIALS AND METHODS 
 

In this section we described how it’s possible to 
define workload. The models and methods have 
described the real-time workload in different way to 
make that more predictable.  
 
Real time workload requirements and 
characteristics: Resource management requires hard 
timing constraints on tasks’ execution and it needs to be 
supported by the proper prediction model. Predictability 
can be achieved only by introducing fundamental 
changes in the basic design paradigm. If a task cannot 
be guaranteed within its time constraints, the system 
must notify it in advance, to take alternative actions 
(Buttazzo, 2011). 

Predictability is one of the most important 
characteristics that a hard real-time system should have. 
With predictability, the system should be able to predict 
the evolution of the tasks and guarantee that all critical 
timing constraints will be meet in advance. The 
proposed prediction models for real time must used to 
assist the derivation of actions and the uncertainty of 
the prediction model must taken into account. As we 
can see in Fig. 2, all tasks must be finished before a 
deadline and to ensure avoidance of failure the slack 
time  should be considered in the hard real-time system.  



 
 

Res. J. Inform. Technol., 7(1): 1-13, 2016 
 

3 

 
 
Fig. 2: Periodic real-time workload 
 
The slack time has a positive impact on an opportunity 
to deal with the uncertainty (Su et al., 2013). As in 
introduction noted the customers have no duty to 
propose their schedule and the customers are unable to 
know when the computing resources needed. Thus, the 
deterministic behavior of a component is desired, 
because it simplifies the understanding of the real-time 
behavior and the time evolution of the system is 
predictable. In all deterministic systems the following 
issues must be completely clarified:  
 
 Timeline  
 Logical reasoning based on a deterministic cause 

and effect relationship  
 Testability of a system (Systems, 2012) 
 

Deterministic behavior is accessible with an 
estimated probability. The real-time imp lementation 
can fail to meet this wanted property of determinism for 
the subsequent reasons (Systems, 2012): 
 
 The base of the computation is not precisely 

defined. 
 When there is a hardware failure. 
 The concept of time is unclear. 
 The system contains Non-Deterministic design 

constructs 
 

In case of indeterminism, the user considers the 
system predictable if it allows computing temporal 
bounds to its outputs within a reasonable time. In this 
research, the different characteristics of uncertain and 
undetermined  data  involved  in  this  context to handle  

uncertainty appropriately in real time. First, the system 
needs the representation of uncertainty on the level of 
attribute values in the prediction model for the real-time 
system. Second, the comprehensive models must 
consider both of the aspects: 
 
 Uncertainty over arbitrary domains for long-term 

prediction 
 The temporal uncertainty that is relevant to the 

processes of planning and forecasting the events 
can occur in undetermined way overtime 
(Eisenreich et al., 2011) 

 
All tasks on real-time computer systems require 

completing the computation within a pre-determined 
deadline. In this case, the results are computed in a 
reliable way and are accurate. Furthermore, favorable 
algorithms provide a high level of locality and 
parallelism. For large real-time scale architectures it 
would be very attractive to arrange a common high-
level algorithm that solves major problems, dominates 
real-time concept and has maximum available resources 
utilization. 
 
The impact of profiling in non-deterministic 
systems: Most of the prediction models are forecast 
based on historical knowledge for short-term requests 
(Mallick et al., 2012). The historical knowledge token 
from the monitoring service, which logs information 
continuously as a profile in a searchable database 
(Anderson et al., 1997) and the whole process showed 
in Fig. 3. The proper analysis tool dissects the stored 
profile information at several levels. The information 
that are produced by the analysis tools leads users to 
explain the static and dynamic changes incurred in 
detail (Verboven et al., 2013). Profile creation process 
has four steps: data granularity, monitoring, processing 
and storing. This process faces different challenges in 
all steps to deal starts with, data definition till storing. 
These challenges are consistency, stability, extra 
overhead, over sizing, efficiency and the integrity of 
distributed knowledge in wide system ranges (Anderson 
et al., 1997; Verboven et al., 2013 and Ren et al., 
2010). 

The resource request planned after estimating the 
resources based on a performance model and a 
workload model. Both performance and workload 
models use past knowledge for training. They construct

 

 
 
Fig. 3: Profile creation process 
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Fig. 4: Profiling and forecasting model 
 
the forecast model based on historical knowledge from 
local workload traces. The output of the machine 
learning is the feedback to the resource allocator 
(Hameed et al., 2014). Rafael Weingarten introduced 
MAPE-K autonomic loop to show how knowledge 
produced. In this model, many parts and components 
have a serious impact on the knowledge creation 
process, which showed in Fig. 4. Rafael divided his 
model into two important parts: profiling and 
forecasting. Sensing, monitoring and analyzing belong 
to the profiling process and the plan, execute and 
effector parts. As you can see, Fig. 4 belongs to the 
forecasting process (Hameed et al., 2014 and 
Weingärtner et al., 2015). The Plan part in a forecasting 
process handles optimizing resource utilization and 
maintaining QoS and QoE (quality of experience). It 
should take an appropriate action based on its 
responsibility. The QoE is the behavior that is 
perceived by end users and it is a way to understand 
end users (Weingärtner et al., 2015). 
 
Methodology for Workload pattern recognition: In 
this section we discussed about our model and all 
methods we applied. The prototype has been prepared 
for cloud to perform real-time tasks. 
 
Workload pattern recognition flow chart: The 
performance of a prediction model, highly depends on 
the workload (Hutchison and Mitchell, 2005). Also, this 
is an attempt to find an accurate characterization that 
can reproduce the performance from historical 
workload traces (Zhang et al., 2011) such as CPU 
utilization, waiting time, virtual machine cost, response 
time, etc. The influence of changes could be determined 
accurately by using a historical workload to minimize 
the risk of performance regressions. For this purpose, 
the characteristic of workload must be well achieved. If 
well-understood, the provider will be able to model the 
workload (Hameed et al., 2014). In all reviewed papers, 
there are three techniques to estimate the workload for 
the next upcoming tasks: First, workload profiling. 
Second, workload modeling. Third, workload 
predicting. Statistical estimation techniques are used in 
profiling to extract reliable workload statistics, although 
they  may  not  be  very  appropriate  for  predicting  the  

workload with large variation. In the second method, 
many researchers build the model for the workload to 
compute the prediction for upcoming tasks in the 
workload by observing the characteristics of the 
specific applications (Gregoriades and Sutcliffe, 2008; 
Sun et al., 2013 and Calzarossa and Serazzi, 1993). The 
workload is probably predicted more accurately by the 
workload model, but this prediction cannot utilized in 
all applications. Workload prediction performs some 
specific strategies in a specific prediction model to 
predict the workload of upcoming tasks (Kuang et al., 
2014). The main steps for the construction of workload 
models can be summarized as follows: 
 
Formulation: A workload model is a conceptual 
description of the tasks parameters (Hutchison and 
Mitchell, 2005). All prediction models have task 
decomposition in their frameworks to find the workload 
pattern (Kousiouris et al., 2014). They define specific 
parameters for their works such as task scheduling, 
delay, machine resource utilization or required 
processing nodes to reach the desired performance 
(Hameed et al., 2014; Hutchison and Mitchell, 2005). 
 
Collection of the parameters: The objective of this 
part is what data the system already has had and what 
additional data the prediction model will need to 
collect. This part, directly affects the whole model, 
because most of the prediction models work based on 
historical knowledge to forecast short-term user's 
resource request (Mallick et al., 2012). Monitoring 
cannot collect all parameters and metric's value, It 
should work on specific metrics and parameters from 
logging data value during time intervals while the 
workload is executed (Mallick et al., 2012). All 
prediction models have a raw data filter model in 
monitoring and they filter unnecessary information 
from raw data (Jiang et al., 2011).  
 
Statistical analysis of the measured data: Monitored 
metrics used statistical analysis to understand the 
behavior of the full system to produce applicable 
outcomes. Monitoring techniques classified as: on-line, 
off-line and hybrid. The online prediction models use 
online monitoring techniques and they are more 
accurate than off-line. They involve lots of overhead 
because monitoring always calculates the parameters 
and resets them during the process. In off-line 
monitoring, there is no instruction to reset the 
parameters and the monitoring technique uses 
previously logged data. In the current situation, 
monitoring is less accurate than the on-line. Hybrid 
monitoring measures the parameters typically at fixed 
time intervals (Elnaffar and Martin, 2009). This 
monitoring technique instructs the model to reset its 
parameters in every specific time interval. All 
monitoring techniques consist of the following steps: 
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 Do collection for elementary analysis to extract the 
basic system behavior such as growth and descent 
trend in parameters (Hutchison and Mitchell, 2005) 

 Transforming the original value of parameters to a 
new form and eliminate the outliers data. The most 
common approach, which used for transforming, is 
a distribution model (Hutchison and Mitchell, 
2005) 

 Pick a reasonable amount of knowledge as a 
sample, because the prediction model suffers from 
inadequate available performance data to train the 
machine in machine learning technique. Also, this 
sample must contain a small group of parameters 
and it is called data distillation. When the data is 
unstructured, messy and crude, the data distillation 
uses the extracting method to select relevant data. 
This distilled data is exported as a set to the next 
phase to filter data. Prediction model implements 
filter or use a normal distribution function to divide 
data  into  relevant  and  irrelevant  data  (Mallick 
et al., 2012; Jiang et al., 2011) 

 Classify data for static analysis, because the 
classifier has a serious impact on monitoring. If the 
prediction model keeps the classifier active all the 
time, then it would help online monitoring to 
reduce the overhead (Elnaffar and Martin, 2009). A 
robust classification is obtained, when the classifier 
finds a similarity in some parameters and does it in 
common intervals 

 
Representativeness: Use some tools for representing a 
workload. One or more parameters are used to interpret 
and model workload (Sharma et al., 2011).  
 
Decision making: All decision makers have followed 
the  same  steps  in  their  process, which is shown in 
Fig. 5. In the first step, events are monitored by event 
phase to find certainty or unpredictable events for 
future demands. In the action phase, the decision maker 
selects an action based course on certain criteria and 
find alternative actions. Eventually, the decision is 
made in the consequence phase and the resulting 
outcome is sent to resource provisions. These three 
parts are considered by most of the decision makers in 
all decisions: First, the available or alternative choices. 
Second, unpredictable events, which are not under the 
control of the decision maker. Third, the cost of the 
decision (Fredericks and Schneider, 2009).  
 
Prediction evaluation: The evaluator measures some 
of the error metrics as metrics of evaluation. Most of 
the new prediction models have some checkpoints to 
evaluate the model during a run time as you can see in 
Fig. 6(a),. As depicted in Fig. 6(b), if the prediction 
error is high in one step, then the prediction coefficient 
will  be  fitted  for  the  next step. Ideally, the prediction  

 
 

Fig. 5: Flow of decision-making 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 6: (a) Prediction model without runtime evaluation; (b) A 
prediction model for runtime evaluation 

 
error is normally distributed and helps predictor to be 
stable (Dinda, 2008). 
 
Risk management and analyzer: The resource risk 
management in PaaS layer has a potential to lead the 
system to an undesirable situation; then there is a risk of 
penalty and customer dissatisfaction. Hence, risk 
analysis can be identified as a proper solution to 
evaluate these risks. However, the entire risk 
management process contains many steps and thus 
needs to be thoroughly discussed. The risk management 
process consists of the following steps: First, establish 
the context. Second, identify the risks involved. Third, 
evaluate each of the identified risks. Fourth, identify 
techniques to manage each risk. Fifth, create, 
implement and review the risk management plan 
(García et al., 2014). 
 
The overall model for workload recognition: A 
sequence of events that are usually measured at 
consecutive  times  and placed at stable time intervals is  



 
 

Res. J. Inform. Technol., 7(1): 1-13, 2016 
 

6 

 
 
Fig. 7: Overview of the structure of the prediction model 
 

 
 
Fig. 8: The overview of the structure of the learning phase 
 
a time series. All predictive methods use the correlation 
between its near future and the history of the process to 
make a reliable prediction model for the future events. 
Recursive models can define the next random variable 
in the time series by employing previous ones within a 
proper time window. In time series, a predicted value is 
presumed based on the real historical values Verboven 
et al. (2013); Deng et al. (2012). After reviewing some 
of the prediction models, the overview of prediction 
model would be like Fig. 7 (Jiang et al., 2011; Thottan 
et al., 2010). 

Training: The proposed abstraction flow diagram for 
an initial prediction model is demonstrated in Fig. 8 
based on (Yin et al., 2014; Elnaffar and Martin 2009; 
Mallick  et  al.,  2012;  Hameed et al., 2014; Doulamis 
et al., 2007 and Mian et al., 2013). Most of the 
methodologies can predict the future demand based on 
the recent request and historical knowledge. All needed 
metrics are collected during a measurement trace from 
representative environments to be imported to the 
learning part. The process in the learning part is the first 
step for most prediction models that use historical 
knowledge Eq. (1). 



 
 

Res. J. Inform. Technol., 7(1): 1-13, 2016 
 

7 

 
 

Fig. 9: Overview of the structure of testing and system enforcement 
 

 
 

Fig. 10: Markov chain State diagram without task 
classification  

 
The process begins with a measurement sequence 

value, which is collected at periodic intervals and then 
the modeler creates a model based on those values and 
the model template. The model template contains 
information about the structure of the desired model of 
users. These processes shape the training part of the 
prediction model. The returned model represents a fit to 
the model structure, which is described in the model 
template during the measurement sequence: 
 

ܴଵ ൌ ሺܴଵି, ܴଶି,… . ܴሻ                 (1) 
 

The result of this part is the initial prediction 
model, which is formed, based on the training. The user 
must consider proper learning algorithm to be naturally 
efficient and effective in the forecasting paradigm. 

In this study, we worked with a real data that 
divided a data stream into three categories: Training, 
testing (evaluating) and performing. The first part of 
workload used for the warm-up to train the system to 
reach a steady-state (Doulamis et al., 2007; Dick et al., 
2014). Some other researchers used a benchmark for 

training in their prediction model. Then, according to 
certain reasons such as the volume and distribution of 
training data, they filtered (Tobaruela et al., 2014), 
smoothed (Sallam et al., 2014) or refined (Yin et al., 
2014 and Elnaffar and Martin, 2009). In the next step, 
the pure data used to create knowledge; then the results 
of monitored data, the static analysis and the initial 
results of performing are used to create knowledge. 
When the volume of knowledge is very high, 
knowledge and data are partitioned into mutually 
exclusive classes. The number of classes defined is 
various and depends on the scenarios and the users. 
After a classification, the modeler will try to find the 
proper model for those classes. Therefore, researchers 
of this study implemented normalization to avoid out of 
range data. Afterward, we distilled achieved data from 
tasks data to extract proper characteristics. Finally, we 
classified those data in different classes. We used K-
means   classification   in   our   experiments   (Fig. 9 
and 10). 
 
Testing and evaluating: The system tested and 
evaluated the model and during the training predictor 
used an m vector-valued prediction stream for 
comparison with actual observed values. The predictor 
also produced error estimations and these estimations 
will serve to compute a confidence interval for the 
prediction (Doulamis et al., 2007). Most testing parts 
used evaluation metrics as feedback. Testing and the 
evaluation metrics evaluated the prediction accuracy 
and in terms of the metrics computed the error 
correction and the system will apply them to fit a 
model. The evaluator compared the actual results with 
the forecasted results to achieve the accurately fitted 
model. The *complete process is shown in Fig. 11. The 
evaluator  will produce much overhead in the prediction  
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Fig. 11: Markov chain state diagram with five classes 
 
model in each run and the checkpoint is a proper 
solution for that problem. Some systems have a 
continuous checkpointing technique to ensure fault-
tolerance and accuracy in their prediction model such as 
Remus in Xen hypervisor (Cully et al., 2008). In all 
checkpoints, the evaluator is triggered to compute 
evaluation metrics. When the number of checkpoints is 
still a lot, the system will face an overhead problem. 
The first important challenge for users is how and when 
they must define checkpoints. Philipp Leitner suggested 
checkpoint predictor that showed in Fig. 9. He has a 
concern about where a prediction should be carried out. 
The hook is the exact point to trigger the checkpoint. 
These inputs define this point: First, concrete point that 
is determined by a user or a timer. Second, prediction 
error and facts. Third, the retraining strategy of the 
evaluator for rebuilding the checkpoint prediction. 
There is a limitation for checkpoint: If no or too little 
historical data is available, the checkpoint must be 
suspended by the predictor manager until enough 
training data has been collected (Leitner et al., 2010). 
 
Failure recovery strategy: This strategy designed for 
unstable Cloud system when Cloud failed to finish tasks 
without any deadline violation. Resources in the cloud 
shared among many customers this act caused 
overloaded resources. 

The failed recovery strategy worked based on the 
number of customers’ reduction and the users’ share 
incrimination. The number of users’ cut to half when in 
the first phase, Cloud has failed to perform real-time 
tasks within a deadline. In the proposed model if Cloud 
achieves success in any phase then the system starts to 
share resources between more customers. This method 
of sharing needs Failure recovery strategy, because if 
sharing does not go well and some tasks failed to finish 
performing before a deadline, the number of users will 
decrease in the next phase based on the following 
equation: 
 

ሾܿݎ݁ݏܷ  1ሿ ൌ
൫௨௦ೖሾሿା௨௦ೖሾ௦ሿ൯

ଶ
              (2) 

 
where, 
S  : The number of successful phase 
c  : The number of the current phase 
K  : The number of classes 

users  : The number of users in class k 
 
Model construction for evaluation: In these aspects, 
for the model construction, Markov chain has been used 
as a multiple time series prediction models. Markov 
chain used information from the previous job to 
consider the sequential dependencies for the next job 
submission. Markov chain identified as a small set of 
relevant states and can move from one state to another 
with certain probabilities (Yin et al., 2014 and Mallick 
et al., 2012). Markov model uses some memory and it 
is possible to describe the whole model by a transition 
matrix. Markov model has a complicated construction; 
the number of states must be limited. If this model has 
many distinct states, then all of them must be 
considered in the trace. Markov model uses state space 
models; that means the state of a system contains all the 
information on the interdependence between the past 
and the future of the system and it works like some 
memory. Given the current state, the future evolution 
becomes independent from the past: 
 

൜
ݐሺݔ  1ሻ ൌ ሻݐሺݔܣ  ሻݐଵሺߝ
ሻݐሺݕ ൌ ሻݐሺݔܥ  ሻݐଶሺߝ

ൠ                (3) 

 
ሻ்ݐሺݔ ൌ ሺݕሺݐ െ ,ሻ … , ݐሺݕ െ 1ሻሻ்              (4) 

 
where, x(t) is an unknown state and x(t+1) estimated 
based on that. 

In Markov model if matrix A in Eq. (1) is stable 
then the future evolution becomes independent from the 
past: 
 

ሻݐሺݔ ൌ ∑ ݐଵሺߝିଵܣ െ ݇ሻ∞
ୀଵ                  (5) 

 
Therefore, the output of the model based on Eq. (3) 

Moreover, (5) is obtained from the following equation 
if u≥t: 
 

ሻݐሺݕ ൌ ሻݐሺݔ௨ି௧ܣܥ  ሻݑ௧ሺߝ  
∑ ݑଵሺߝିଵܣܥ െ ݇ሻ௨ି௧
ୀଵ                                           (6) 

 
The Markov Model was used to explore the 

sequential correlations in workload pattern changes. 
This allows us to predict individual VM’s workload 
based on the groups found in the previous step. This 
study is based on real measurement data collected from 
the real-time workload in CEA supercomputer, hence 
provides insights for administrators of the system to 
realize the typical cloud workload patterns and have a 
better resources managing. 

Researchers of this study, used Markov chain as a 
prediction model and considered six different states in 
the  proposed  model.  These  states  represented  in 
Table 1.  

They cover the whole possibility of experiments. 
Above mentioned states used in the proposed model to 
perform real-time tasks within a deadline. This model 
also controls the resource utilization separately in each 
class.  This  means  each  class  can play individually. If  
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Table 1: The Markov chain states 
State number Description Action
State 0 Model Failed to 

finish tasks until a deadline 
The number of users turns to half the current users and number 
of resource starts to increase

State 1 40%<Utilization<100% Start to absorb more resources and share them with more users 
State 2 0%≤Utilization≤40% Resource share between more users 
State 3 0%≤Utilization≤100% and model reach maximum user 

sharing 
System starts to adjust the number of resources to help the 
system to reach optimum utilization 

State 4 Current Utilization >100% and the previous utilization is 
less than 100%  

Make an average for number of resources between these two 
situations 

State 5 Utilization = 100% and system is overloaded Start to absorb more resources
 
Table 2: Number of failed tasks during 5 test performs 

Model 

Number of failed task in different test
--------------------------------------------------------------------------------------------------------------
First run Second run Third run Fourth run Fifth run

Markov chain without classification 0 0 0 0 0
Markov chain with 5 classes 0 0 0 0 0
Markov chain with 10 classes 0 0 0 0 0
Mean model without classification 583 0 186 107 0
Mean model with 5 classes 258 0 0 0 0
Mean model with 10 classes 225 0 0 0 0
Auto correlation without tasks classification 628 0 187 108 0
Auto correlation with 5 classes 296 45 0 0 0
Auto correlation with 10 classes 225 30 0 0 0

 
the results show any class of visited the 0 state in the 
Markov chain state diagram; it means proposed model 
failed to perform tasks within a deadline. 
 

RESULTS 
 

In this section, we show how CloudSim was set to 
implement our prototype. Also, we evaluate that 
prototype   with  the  achieved  results  to show how the 
proposed prediction model can predict the future 
demand. 
 
CloudSim setting: In this experiments, we settled a 
cloud environment in CloudSim and we considered five 
data centers to provide a large number of available 
resources in the resource pool. VMs are considered to 
have the same specification with VM in Amazon EC2. 
This experiment performed for 24 times to reach the 
maximum user sharing. Also, we considered 80% for 
stable point for resource utilization. System distillate 
data from received tasks based on the size of cloudlet 
and the number of requested CPUs. The maximum 
number of users considered a million (a big amount of 
users) then model with or without classification has the 
best effort to share resources among these customers. 
During a learning part, we used a simple time series 
MA(2) to reconsider some resources separately in each 
class. Also, VMs will be allocated exclusively to each 
class. At the end of the phase, each class would be in 
one of the six situations that are defined in Table 1. For 
evaluation part, we implemented Markov chain model 
to turn Cloud to a deterministic host for real-time tasks 
(Table 2).  
 
Evaluation metrics: In this study, according to the 
objectives that we've been looking for, several metrics 
computed and compared to evaluate the performance of 
our model. The first objective of this research was to 
design a model that would ensure that, in the face of 

real-time tasks does not violate the time limit. For this 
reason, the number of time limit violation in all model 
reviewed and compared. The second objective is truly 
important, we want to know how our model is efficient 
and  following  metrics  have  been  studied. The RMSE  
were considered to evaluate the efficiency of models 
and R2 were used to determine how models are 
accurate. Also, the number of users: to understand 
which models are successful in sharing resources 
among more users, have been used as an evaluation 
metric, as well as the average of CPU utilization has 
been considered to understand the correlation between 
tasks failure and utilization. 
 
Evaluation results: In the first experiment, we 
performed model without any classification and the 
following transition matrix Eq. (7) and state diagram 
have been achieved (Fig.10) after 24 time performs: 
 

 ݔ݅ݎݐܽܯ	݊݅ݐ݅ݏ݊ܽݎܶ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 0
0 0 0
0 0.50 0.50

0 0 0
0 0 1.00
0 0 0

0 0 1
0 0 0
0 0.42 0.16

0 0 0
0 0 0
0 0 ے0.42

ۑ
ۑ
ۑ
ۑ
ې

               (7) 

 
This experiment clearly shows our model can 

perform tasks within a time limit without any deadline 
violation because it has never met the state zero. As we 
explained before in Table 1; state zero happens when 
we have a deadline violation. 

In next experiments we evaluate our model with 
tasks classification in the first step we distributed our 
tasks in 5 different classes. The state diagram (Fig. 11) 
and the transition matrix have been achieved as follow 
Eq. (8): 
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Fig. 12: Markov chain state diagram with 10 classes 

 
Transition matrix 

                (8) 
 

The results show the proposed model has never 
visited the state zero the same as the previous 
experience we did not have any failed tasks. For the 
third experience, we performed our model with ten 
classes then the following results have been achieved 
Eq. (9) (Fig. 12). The third experiment results also 
show the model with ten classes has never visited the 
state zero: 
 

Transition Matrix      

                          (9) 
 

We used some non-feedback based model for 
training processes such as autocorrelation and Mean 
model for prediction. These models used with the 
maximum user sharing and performed for five times as 
like as the proposed model. Also, the classification has 
been used to improve the results, but the achievements 
show very clear the autocorrelation and Mean model 
cannot guarantee the deadline violation never happen. 
Also, the results show the recovery plan to avoid failure 
in all model works well. The whole model after five 
times performing reached to zero number of failed 
tasks. In a subsequent experiment, the number of end 
users after five times perform were identified. 

The Table 3 shows how the proposed model is 
successful to share resources among more users. As the 
results show the failed recovery strategy decreased the 
number of end users until the Cloud system reaches a 
steady state. The Markov models-with or without 
classification-remain steady during five times 
performing. 

Table 4 shows how many CPUs our real-time tasks 
received during these experiments. It is very clear the 
failure recovery strategy increased the resource share to 
solve the overloaded CPUs problem. Otherwise, 
proposed models (the Markov models with or without 
classifications) has reached to the state 3 in the Markov 
chain state diagram. The state 3 has a duty to stabilized 
Cloud system and establish load balancing. Also in all 
the experiments with ten classes of tasks, less number 
of CPUs absorbed, although according to the Table 4 
they reached better user sharing (Table 5).  

In all the experiments that have been tried the 
average of CPU utilization placed around 80%, because 
we reached to the following table in different tests. 
Hence, to find which model has better convergence 
(more than 80%) for utilization, all of the models 
evaluated. Table 6 shows the mean model and

Table 3: Number of users that resources are shared among them 

Model 

Number of end users in different test
-----------------------------------------------------------------------------------------------------------------
First run Second run Third run Fourth run Fifth run

Markov chain without classification 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000
Markov chain with 5 classes 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000
Markov chain with 10 classes 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000
Mean model without classification 1, 000, 000 500, 000 500, 000 250, 000 125, 000
Mean model with 5 classes 1, 000, 000 268, 817 268, 817 268, 817 268, 817
Mean model with 10 classes 1, 000, 000 617, 284 617, 284 617, 284 617, 284
Auto correlation without tasks classification 1, 000, 000 500, 000 500, 000 250, 000 125, 000
Auto correlation with 5 classes 1, 000, 000 294, 118 222, 892 222, 892 222, 892
Auto correlation with 10 classes 1, 000, 000 617, 284 601, 411 601, 411 601, 411
 
Table 4: The number of allocated CPUs 

Model 

Number of allocated CPUs to real-time workload
-----------------------------------------------------------------------------------------------------------------
First run Second run Third run Fourth run Fifth run

Markov chain without classification 22946 22882 23010 22850 22978
Markov chain with 5 classes 23290 23162 23226 23226 23114
Markov chain with 10 classes 15804 15484 15884 16540 18204
Mean model without classification 26 2272 24386 21378 15010
Mean model with 5 classes 186 570 3306 8234 13994
Mean model with 10 classes 810 1310 2428 3420 4524
Auto correlation without tasks classification 10 496 22786 20546 15138
Auto correlation with 5 classes 170 332 1626 4890 9466
Auto correlation with 10 classes 810 1134 1660 2172 2540
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Table 5: Situations based on utilization 
Utilization Risk 
Utilization<0.4 No risk for task failure and ready to share between more customers 
0.4<Utilization<0.8 Low risk for task failure, and ready to absorb a little bit more resources and share resources between more users 
0.8<Utilization≤1 High risk for task failure, and ready to absorb more resources and share resources between more users 
Utilization = 1 and there is a 
long waiting task queue 

Very high risk for task failure No more resource sharing and system need more resources to solve the 
overloading problem 

 
Table 6: The average of utilization 

Model 

The average of utilization percentage 
-----------------------------------------------------------------------------------------------------------------
First run Second run Third run Fourth run Fifth run 

Markov chain without classification 80.93 79.8 80.93 79.08 80.36 
Markov chain with 5 classes 81.11 83.87 83.56 83.08 83.11 
Markov chain with 10 classes 131.15 112.07 101.77 87.64 83.78 
Mean model without classification 19707 1085 67.23 50.46 32.45 
Mean model with 5 classes 4031.17 1997.32 1396.82 517.13 147.22 
Mean model with 10 classes 2150 554.7717 554.77 372.44 334.09 
Auto correlation without tasks classification 24678 4721 70.25 53.62 37.84 
Auto correlation with 5 classes 5244.83 2337.58 1691.93 1161 424 
Auto correlation with 10 classes 2140.209 567.62 47.03 372.25 308.63 
The percentage over 100 means overloading and there is a waiting task queue 
 

 
 

Fig. 13: The amount of RMSE 
 
Table 7: The amout of R2   
Model R2 
Markov chain without classification  0.7078 
Markov chain with 5 classes  0.9321 
Markov chain with 10 classes  0.9668 
Mean model without classification  0.9901 
Mean model with 5 classes  0.5963 
Mean model with 10 classes -0.6372 
Autocorrelation without tasks classification  0.9921 
Autocorrelation with 5 classes  0.317 
Autocorrelation with 10 classes -0.8480 

 
autocorrelation prediction model have been caused the 
worth utilization in Cloud host in comparision with 
Markov chain prediction model. 

When we look at the results in Table 6 and 2, Mean 
and Autocorrelation models were overloaded in first 
perform and the number of failed tasks are two high. 
However, failure recovery strategy shows its impact on 
the results from the second run. The number of deadline 
violation decreased since utilization had been 
improved, although it seems there is no convergence of 

utilization for prediction models based on the Mean and 
Auto Correlation. 

Figure 13, we compute RMSE of models to 
evaluate which one of models is more efficient than the 
others. As you can see the Markov chain models with 
or without classification have better results among other 
models. The impact of classification shows the number 
of classes has a positive effect on efficiency. 

In the last test models were evaluated in terms of 
the precision. As we mentioned before in “evaluation 
metrics”; R2 is a common evaluation metric to find how 
much prediction model is accurate. This metric has 
been computed for all models (Table 7), the nearest R2 
to 1 has the best accuracy. 
 

DISCUSSION 
 

In this study, a new multi-objective model 
proposed and a new model to predict the demands and 
anomalies described. This model shared resources to 
prepare this host ready for performing real-time 
workload among more customers in Cloud system. The 
experiments showed feedback based prediction model 
can perform real-time tasks in Cloud system. However, 
there is no guarantee for Cloud to perform real-time 
tasks without any deadline violation. The proposed 
model can identify the required resources for real-time 
tasks (i.e., by using the Markov chain, a predictive 
model and automatic adaptive resource scaling and 
sharing). Cloud infrastructure providers adopted our 
approach not only to offer their customers with 
response time guarantees but also to minimize the 
resources allocated to the customers. It is difficult to 
say that task classification had a positive impact in all 
aspects. The experiments showed all models with task 
classification had slow convergence to reach the 80% of 
CPU utilization, but the proposed model improved the 
prediction efficiency and accuracy.  



 
 

Res. J. Inform. Technol., 7(1): 1-13, 2016 
 

12 

One of the way to extend this system is to support 
Real-time economic model on a cloud. Another way is 
to extend resource scaling strategy, which is currently 
only used to attract inexpensive resources, absorb idle 
resources and migrate them to associate with 
overloaded resources in advance in order to overcome 
the virtual machine boot-up latency problem is another 
open way for reasearchers.  
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