
Research Journal of Information Technology 7(1): 1-13, 2016
DOI:10.19026/rjit.7.2806
ISSN: 2041-3106; e-ISSN: 2041-3114
© 2016 Maxwell Scientific Publication Corp.
Submitted: October 9, 2015 Accepted: December 5, 2015 Published: May 05, 2016

Corresponding Author: Babak Esmaeilpour Ghouchani, Faculty of Computer Science and Information Technologi, UPM

Malaysia, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1

Research Article
A New Workload Recognition Strategy to Improve the Speed of Resource Provisioning in

PaaS Layer of Cloud for Real-Time Demands

Babak Esmaeilpour Ghouchani, Azizol Abdullah, Nor Asila Wati Abdul Hamid and
Amir Rizaan Abdul Rahiman

Faculty of Computer Science and Information Technologi, UPM Malaysia, Malaysia

Abstract: The real-time system should guarantee that all critical timing constraints will be met in advance. Many
distributed systems such as a cloud environment have a nondeterministic structure and it would cause a serious
problem for real time, but the user can access a large number of shared resources. Also launching a new resource in
the IaaS layer of a Cloud is not instantaneous. Prediction model, risk management in PaaS and monitoring in IaaS
are the most important parts that a real-time system should have because they must face a challenge in
understanding the system and the behavior of workload completely. The results of analyzing, monitoring and
prediction have serious impacts on system reaction. Understanding the workload is an important challenge in all
systems and they use different models to identify the types or predict changes over the time. A prediction model
must have the ability to produce and shape the pattern of workloads with low overhead. In this study, we propose an
enhancement for profiling process with continues Markov chain to make hosts deterministic for users. The
effectiveness and the accuracy of the proposed model measured in the evolution part. Also, the number of the failed
tasks counted in this new model to show how proposed model is successful.

Keywords: Anomaly detection, cloud computing, prediction model, real-time, time series

INTRODUCTION

In Cloud, a user has an opportunity to access a

large number of resources. However, these resources
are often shared with other users and many of the
available resources are greatly over time (Bible et al.,
year). Also, the delay in IaaS layer for resource
initializing may cause a failure or system delay during a
process. The system could apparently work well in a
period, but it could collapse in certain rare, but possible
situations (Bible et al., year). The general structure of
Cloud environment is depicted in Fig. 1. If all the
critical time constraints cannot be verified, it could
collapse because scheduling algorithm in core system
layer in cloud system does not include specific
mechanisms for handling real-time tasks (Wang, 2012).
For programs that are running in a cloud, resource
provisioning is one of the key issues. Allocating
resources far beyond the request have a negative effect
on cost and utilization for users and may cause over
provisioning problem for providers. Also, allocating
resources less than the request have a major impact on
system delay and task failure. This means, in order to
maximize the application performance, the user must
carefully select a subset of the resources and schedule

the application to run on these resources before an
application is launched to run in the cloud, Dynamic
resource scaling is one of the key characteristics that
distinguish the Cloud systems from the traditional
computing hosts (Kusic and Kandasamy, 2007).

Initialization time for a new virtual instance in
PaaS layer of the Cloud is not immediate and it has
several minutes delay for hardware resource allocation
in IaaS layer hosting platforms. The perspective of the
current technologies showed reduction of VM
initialization time is possible (Islam et al., 2012). Some
technologies like streaming VM allows the customer to
preview the VM before it is completely ready. The
simple solution is to ask all the customers to determine
future VM requests, so the cloud service provider in the
SaaS layer can prepare all the VMs on time. However,
it seems impossible because first, The customers have
no duty to propose their schedule. Second, the
customers, are unable to know when the computing
resources are needed. Third, the combination of
customers, is always changing. Fourth, the actual
schedule may change at any time (Jiang et al., 2011). In
the researchers of this study’s view, there is only one
solution for overcoming the technology limitations and
user constraint satisfaction and it is to predict the

Res. J. Inform. Technol., 7(1): 1-13, 2016

2

Fig. 1: General structure of cloud environment

demands and prepare the VMs in advance. Predicting
and monitoring the user's demand is a fundamental
issue when tasks are running on a virtualized system
(Jiang et al., 2011).

Performance analysis and prediction model need a
potent understanding of the system. This is mainly
because, the real-time control completely depends on
sensory input data and environmental conditions. The
system must be analyzable to achieve a desired level of
performance and predict the consequences in the
workload such as burstiness. Because, a workload has a
critical impact on resource provisioning and
performance of the cloud-based applications. Most of
the predictors and performance analyzers face a
challenge to understand workload completely and
model them. They use different techniques to identify
the type of a workload and predict the changes in that
type over the time (Yin et al., 2014; Elnaffar and
Martin, 2009).

In this study, we will make the following important
objectives. In the first step we clearly introduce real-
time workload characteristics and constraints, besides
we explain, how to find the pattern of workload. In next
step we use the pattern to introduce the prototype
implementation of our model for performing real-time
tasks in Cloud.

MATERIALS AND METHODS

In this section we described how it’s possible to
define workload. The models and methods have
described the real-time workload in different way to
make that more predictable.

Real time workload requirements and
characteristics: Resource management requires hard
timing constraints on tasks’ execution and it needs to be
supported by the proper prediction model. Predictability
can be achieved only by introducing fundamental
changes in the basic design paradigm. If a task cannot
be guaranteed within its time constraints, the system
must notify it in advance, to take alternative actions
(Buttazzo, 2011).

Predictability is one of the most important
characteristics that a hard real-time system should have.
With predictability, the system should be able to predict
the evolution of the tasks and guarantee that all critical
timing constraints will be meet in advance. The
proposed prediction models for real time must used to
assist the derivation of actions and the uncertainty of
the prediction model must taken into account. As we
can see in Fig. 2, all tasks must be finished before a
deadline and to ensure avoidance of failure the slack
time should be considered in the hard real-time system.

Res. J. Inform. Technol., 7(1): 1-13, 2016

3

Fig. 2: Periodic real-time workload

The slack time has a positive impact on an opportunity
to deal with the uncertainty (Su et al., 2013). As in
introduction noted the customers have no duty to
propose their schedule and the customers are unable to
know when the computing resources needed. Thus, the
deterministic behavior of a component is desired,
because it simplifies the understanding of the real-time
behavior and the time evolution of the system is
predictable. In all deterministic systems the following
issues must be completely clarified:

 Timeline
 Logical reasoning based on a deterministic cause

and effect relationship
 Testability of a system (Systems, 2012)

Deterministic behavior is accessible with an
estimated probability. The real-time imp lementation
can fail to meet this wanted property of determinism for
the subsequent reasons (Systems, 2012):

 The base of the computation is not precisely

defined.
 When there is a hardware failure.
 The concept of time is unclear.
 The system contains Non-Deterministic design

constructs

In case of indeterminism, the user considers the
system predictable if it allows computing temporal
bounds to its outputs within a reasonable time. In this
research, the different characteristics of uncertain and
undetermined data involved in this context to handle

uncertainty appropriately in real time. First, the system
needs the representation of uncertainty on the level of
attribute values in the prediction model for the real-time
system. Second, the comprehensive models must
consider both of the aspects:

 Uncertainty over arbitrary domains for long-term

prediction
 The temporal uncertainty that is relevant to the

processes of planning and forecasting the events
can occur in undetermined way overtime
(Eisenreich et al., 2011)

All tasks on real-time computer systems require

completing the computation within a pre-determined
deadline. In this case, the results are computed in a
reliable way and are accurate. Furthermore, favorable
algorithms provide a high level of locality and
parallelism. For large real-time scale architectures it
would be very attractive to arrange a common high-
level algorithm that solves major problems, dominates
real-time concept and has maximum available resources
utilization.

The impact of profiling in non-deterministic
systems: Most of the prediction models are forecast
based on historical knowledge for short-term requests
(Mallick et al., 2012). The historical knowledge token
from the monitoring service, which logs information
continuously as a profile in a searchable database
(Anderson et al., 1997) and the whole process showed
in Fig. 3. The proper analysis tool dissects the stored
profile information at several levels. The information
that are produced by the analysis tools leads users to
explain the static and dynamic changes incurred in
detail (Verboven et al., 2013). Profile creation process
has four steps: data granularity, monitoring, processing
and storing. This process faces different challenges in
all steps to deal starts with, data definition till storing.
These challenges are consistency, stability, extra
overhead, over sizing, efficiency and the integrity of
distributed knowledge in wide system ranges (Anderson
et al., 1997; Verboven et al., 2013 and Ren et al.,
2010).

The resource request planned after estimating the
resources based on a performance model and a
workload model. Both performance and workload
models use past knowledge for training. They construct

Fig. 3: Profile creation process

Res. J. Inform. Technol., 7(1): 1-13, 2016

4

Fig. 4: Profiling and forecasting model

the forecast model based on historical knowledge from
local workload traces. The output of the machine
learning is the feedback to the resource allocator
(Hameed et al., 2014). Rafael Weingarten introduced
MAPE-K autonomic loop to show how knowledge
produced. In this model, many parts and components
have a serious impact on the knowledge creation
process, which showed in Fig. 4. Rafael divided his
model into two important parts: profiling and
forecasting. Sensing, monitoring and analyzing belong
to the profiling process and the plan, execute and
effector parts. As you can see, Fig. 4 belongs to the
forecasting process (Hameed et al., 2014 and
Weingärtner et al., 2015). The Plan part in a forecasting
process handles optimizing resource utilization and
maintaining QoS and QoE (quality of experience). It
should take an appropriate action based on its
responsibility. The QoE is the behavior that is
perceived by end users and it is a way to understand
end users (Weingärtner et al., 2015).

Methodology for Workload pattern recognition: In
this section we discussed about our model and all
methods we applied. The prototype has been prepared
for cloud to perform real-time tasks.

Workload pattern recognition flow chart: The
performance of a prediction model, highly depends on
the workload (Hutchison and Mitchell, 2005). Also, this
is an attempt to find an accurate characterization that
can reproduce the performance from historical
workload traces (Zhang et al., 2011) such as CPU
utilization, waiting time, virtual machine cost, response
time, etc. The influence of changes could be determined
accurately by using a historical workload to minimize
the risk of performance regressions. For this purpose,
the characteristic of workload must be well achieved. If
well-understood, the provider will be able to model the
workload (Hameed et al., 2014). In all reviewed papers,
there are three techniques to estimate the workload for
the next upcoming tasks: First, workload profiling.
Second, workload modeling. Third, workload
predicting. Statistical estimation techniques are used in
profiling to extract reliable workload statistics, although
they may not be very appropriate for predicting the

workload with large variation. In the second method,
many researchers build the model for the workload to
compute the prediction for upcoming tasks in the
workload by observing the characteristics of the
specific applications (Gregoriades and Sutcliffe, 2008;
Sun et al., 2013 and Calzarossa and Serazzi, 1993). The
workload is probably predicted more accurately by the
workload model, but this prediction cannot utilized in
all applications. Workload prediction performs some
specific strategies in a specific prediction model to
predict the workload of upcoming tasks (Kuang et al.,
2014). The main steps for the construction of workload
models can be summarized as follows:

Formulation: A workload model is a conceptual
description of the tasks parameters (Hutchison and
Mitchell, 2005). All prediction models have task
decomposition in their frameworks to find the workload
pattern (Kousiouris et al., 2014). They define specific
parameters for their works such as task scheduling,
delay, machine resource utilization or required
processing nodes to reach the desired performance
(Hameed et al., 2014; Hutchison and Mitchell, 2005).

Collection of the parameters: The objective of this
part is what data the system already has had and what
additional data the prediction model will need to
collect. This part, directly affects the whole model,
because most of the prediction models work based on
historical knowledge to forecast short-term user's
resource request (Mallick et al., 2012). Monitoring
cannot collect all parameters and metric's value, It
should work on specific metrics and parameters from
logging data value during time intervals while the
workload is executed (Mallick et al., 2012). All
prediction models have a raw data filter model in
monitoring and they filter unnecessary information
from raw data (Jiang et al., 2011).

Statistical analysis of the measured data: Monitored
metrics used statistical analysis to understand the
behavior of the full system to produce applicable
outcomes. Monitoring techniques classified as: on-line,
off-line and hybrid. The online prediction models use
online monitoring techniques and they are more
accurate than off-line. They involve lots of overhead
because monitoring always calculates the parameters
and resets them during the process. In off-line
monitoring, there is no instruction to reset the
parameters and the monitoring technique uses
previously logged data. In the current situation,
monitoring is less accurate than the on-line. Hybrid
monitoring measures the parameters typically at fixed
time intervals (Elnaffar and Martin, 2009). This
monitoring technique instructs the model to reset its
parameters in every specific time interval. All
monitoring techniques consist of the following steps:

Res. J. Inform. Technol., 7(1): 1-13, 2016

5

 Do collection for elementary analysis to extract the
basic system behavior such as growth and descent
trend in parameters (Hutchison and Mitchell, 2005)

 Transforming the original value of parameters to a
new form and eliminate the outliers data. The most
common approach, which used for transforming, is
a distribution model (Hutchison and Mitchell,
2005)

 Pick a reasonable amount of knowledge as a
sample, because the prediction model suffers from
inadequate available performance data to train the
machine in machine learning technique. Also, this
sample must contain a small group of parameters
and it is called data distillation. When the data is
unstructured, messy and crude, the data distillation
uses the extracting method to select relevant data.
This distilled data is exported as a set to the next
phase to filter data. Prediction model implements
filter or use a normal distribution function to divide
data into relevant and irrelevant data (Mallick
et al., 2012; Jiang et al., 2011)

 Classify data for static analysis, because the
classifier has a serious impact on monitoring. If the
prediction model keeps the classifier active all the
time, then it would help online monitoring to
reduce the overhead (Elnaffar and Martin, 2009). A
robust classification is obtained, when the classifier
finds a similarity in some parameters and does it in
common intervals

Representativeness: Use some tools for representing a
workload. One or more parameters are used to interpret
and model workload (Sharma et al., 2011).

Decision making: All decision makers have followed
the same steps in their process, which is shown in
Fig. 5. In the first step, events are monitored by event
phase to find certainty or unpredictable events for
future demands. In the action phase, the decision maker
selects an action based course on certain criteria and
find alternative actions. Eventually, the decision is
made in the consequence phase and the resulting
outcome is sent to resource provisions. These three
parts are considered by most of the decision makers in
all decisions: First, the available or alternative choices.
Second, unpredictable events, which are not under the
control of the decision maker. Third, the cost of the
decision (Fredericks and Schneider, 2009).

Prediction evaluation: The evaluator measures some
of the error metrics as metrics of evaluation. Most of
the new prediction models have some checkpoints to
evaluate the model during a run time as you can see in
Fig. 6(a),. As depicted in Fig. 6(b), if the prediction
error is high in one step, then the prediction coefficient
will be fitted for the next step. Ideally, the prediction

Fig. 5: Flow of decision-making

(a)

(b)

Fig. 6: (a) Prediction model without runtime evaluation; (b) A
prediction model for runtime evaluation

error is normally distributed and helps predictor to be
stable (Dinda, 2008).

Risk management and analyzer: The resource risk
management in PaaS layer has a potential to lead the
system to an undesirable situation; then there is a risk of
penalty and customer dissatisfaction. Hence, risk
analysis can be identified as a proper solution to
evaluate these risks. However, the entire risk
management process contains many steps and thus
needs to be thoroughly discussed. The risk management
process consists of the following steps: First, establish
the context. Second, identify the risks involved. Third,
evaluate each of the identified risks. Fourth, identify
techniques to manage each risk. Fifth, create,
implement and review the risk management plan
(García et al., 2014).

The overall model for workload recognition: A
sequence of events that are usually measured at
consecutive times and placed at stable time intervals is

Res. J. Inform. Technol., 7(1): 1-13, 2016

6

Fig. 7: Overview of the structure of the prediction model

Fig. 8: The overview of the structure of the learning phase

a time series. All predictive methods use the correlation
between its near future and the history of the process to
make a reliable prediction model for the future events.
Recursive models can define the next random variable
in the time series by employing previous ones within a
proper time window. In time series, a predicted value is
presumed based on the real historical values Verboven
et al. (2013); Deng et al. (2012). After reviewing some
of the prediction models, the overview of prediction
model would be like Fig. 7 (Jiang et al., 2011; Thottan
et al., 2010).

Training: The proposed abstraction flow diagram for
an initial prediction model is demonstrated in Fig. 8
based on (Yin et al., 2014; Elnaffar and Martin 2009;
Mallick et al., 2012; Hameed et al., 2014; Doulamis
et al., 2007 and Mian et al., 2013). Most of the
methodologies can predict the future demand based on
the recent request and historical knowledge. All needed
metrics are collected during a measurement trace from
representative environments to be imported to the
learning part. The process in the learning part is the first
step for most prediction models that use historical
knowledge Eq. (1).

Res. J. Inform. Technol., 7(1): 1-13, 2016

7

Fig. 9: Overview of the structure of testing and system enforcement

Fig. 10: Markov chain State diagram without task
classification

The process begins with a measurement sequence

value, which is collected at periodic intervals and then
the modeler creates a model based on those values and
the model template. The model template contains
information about the structure of the desired model of
users. These processes shape the training part of the
prediction model. The returned model represents a fit to
the model structure, which is described in the model
template during the measurement sequence:

ܴଵ ൌ ሺܴଵି, ܴଶି,… . ܴሻ (1)

The result of this part is the initial prediction
model, which is formed, based on the training. The user
must consider proper learning algorithm to be naturally
efficient and effective in the forecasting paradigm.

In this study, we worked with a real data that
divided a data stream into three categories: Training,
testing (evaluating) and performing. The first part of
workload used for the warm-up to train the system to
reach a steady-state (Doulamis et al., 2007; Dick et al.,
2014). Some other researchers used a benchmark for

training in their prediction model. Then, according to
certain reasons such as the volume and distribution of
training data, they filtered (Tobaruela et al., 2014),
smoothed (Sallam et al., 2014) or refined (Yin et al.,
2014 and Elnaffar and Martin, 2009). In the next step,
the pure data used to create knowledge; then the results
of monitored data, the static analysis and the initial
results of performing are used to create knowledge.
When the volume of knowledge is very high,
knowledge and data are partitioned into mutually
exclusive classes. The number of classes defined is
various and depends on the scenarios and the users.
After a classification, the modeler will try to find the
proper model for those classes. Therefore, researchers
of this study implemented normalization to avoid out of
range data. Afterward, we distilled achieved data from
tasks data to extract proper characteristics. Finally, we
classified those data in different classes. We used K-
means classification in our experiments (Fig. 9
and 10).

Testing and evaluating: The system tested and
evaluated the model and during the training predictor
used an m vector-valued prediction stream for
comparison with actual observed values. The predictor
also produced error estimations and these estimations
will serve to compute a confidence interval for the
prediction (Doulamis et al., 2007). Most testing parts
used evaluation metrics as feedback. Testing and the
evaluation metrics evaluated the prediction accuracy
and in terms of the metrics computed the error
correction and the system will apply them to fit a
model. The evaluator compared the actual results with
the forecasted results to achieve the accurately fitted
model. The *complete process is shown in Fig. 11. The
evaluator will produce much overhead in the prediction

Res. J. Inform. Technol., 7(1): 1-13, 2016

8

Fig. 11: Markov chain state diagram with five classes

model in each run and the checkpoint is a proper
solution for that problem. Some systems have a
continuous checkpointing technique to ensure fault-
tolerance and accuracy in their prediction model such as
Remus in Xen hypervisor (Cully et al., 2008). In all
checkpoints, the evaluator is triggered to compute
evaluation metrics. When the number of checkpoints is
still a lot, the system will face an overhead problem.
The first important challenge for users is how and when
they must define checkpoints. Philipp Leitner suggested
checkpoint predictor that showed in Fig. 9. He has a
concern about where a prediction should be carried out.
The hook is the exact point to trigger the checkpoint.
These inputs define this point: First, concrete point that
is determined by a user or a timer. Second, prediction
error and facts. Third, the retraining strategy of the
evaluator for rebuilding the checkpoint prediction.
There is a limitation for checkpoint: If no or too little
historical data is available, the checkpoint must be
suspended by the predictor manager until enough
training data has been collected (Leitner et al., 2010).

Failure recovery strategy: This strategy designed for
unstable Cloud system when Cloud failed to finish tasks
without any deadline violation. Resources in the cloud
shared among many customers this act caused
overloaded resources.

The failed recovery strategy worked based on the
number of customers’ reduction and the users’ share
incrimination. The number of users’ cut to half when in
the first phase, Cloud has failed to perform real-time
tasks within a deadline. In the proposed model if Cloud
achieves success in any phase then the system starts to
share resources between more customers. This method
of sharing needs Failure recovery strategy, because if
sharing does not go well and some tasks failed to finish
performing before a deadline, the number of users will
decrease in the next phase based on the following
equation:

ሾܿݎ݁ݏܷ 1ሿ ൌ
൫௨௦ೖሾሿା௨௦ೖሾ௦ሿ൯

ଶ
 (2)

where,
S : The number of successful phase
c : The number of the current phase
K : The number of classes

users : The number of users in class k

Model construction for evaluation: In these aspects,
for the model construction, Markov chain has been used
as a multiple time series prediction models. Markov
chain used information from the previous job to
consider the sequential dependencies for the next job
submission. Markov chain identified as a small set of
relevant states and can move from one state to another
with certain probabilities (Yin et al., 2014 and Mallick
et al., 2012). Markov model uses some memory and it
is possible to describe the whole model by a transition
matrix. Markov model has a complicated construction;
the number of states must be limited. If this model has
many distinct states, then all of them must be
considered in the trace. Markov model uses state space
models; that means the state of a system contains all the
information on the interdependence between the past
and the future of the system and it works like some
memory. Given the current state, the future evolution
becomes independent from the past:

൜
ݐሺݔ 1ሻ ൌ ሻݐሺݔܣ ሻݐଵሺߝ
ሻݐሺݕ ൌ ሻݐሺݔܥ ሻݐଶሺߝ

ൠ (3)

ሻ்ݐሺݔ ൌ ሺݕሺݐ െ ,ሻ … , ݐሺݕ െ 1ሻሻ் (4)

where, x(t) is an unknown state and x(t+1) estimated
based on that.

In Markov model if matrix A in Eq. (1) is stable
then the future evolution becomes independent from the
past:

ሻݐሺݔ ൌ ∑ ݐଵሺߝିଵܣ െ ݇ሻ∞
ୀଵ (5)

Therefore, the output of the model based on Eq. (3)

Moreover, (5) is obtained from the following equation
if u≥t:

ሻݐሺݕ ൌ ሻݐሺݔ௨ି௧ܣܥ ሻݑ௧ሺߝ
∑ ݑଵሺߝିଵܣܥ െ ݇ሻ௨ି௧
ୀଵ (6)

The Markov Model was used to explore the

sequential correlations in workload pattern changes.
This allows us to predict individual VM’s workload
based on the groups found in the previous step. This
study is based on real measurement data collected from
the real-time workload in CEA supercomputer, hence
provides insights for administrators of the system to
realize the typical cloud workload patterns and have a
better resources managing.

Researchers of this study, used Markov chain as a
prediction model and considered six different states in
the proposed model. These states represented in
Table 1.

They cover the whole possibility of experiments.
Above mentioned states used in the proposed model to
perform real-time tasks within a deadline. This model
also controls the resource utilization separately in each
class. This means each class can play individually. If

Res. J. Inform. Technol., 7(1): 1-13, 2016

9

Table 1: The Markov chain states
State number Description Action
State 0 Model Failed to

finish tasks until a deadline
The number of users turns to half the current users and number
of resource starts to increase

State 1 40%<Utilization<100% Start to absorb more resources and share them with more users
State 2 0%≤Utilization≤40% Resource share between more users
State 3 0%≤Utilization≤100% and model reach maximum user

sharing
System starts to adjust the number of resources to help the
system to reach optimum utilization

State 4 Current Utilization >100% and the previous utilization is
less than 100%

Make an average for number of resources between these two
situations

State 5 Utilization = 100% and system is overloaded Start to absorb more resources

Table 2: Number of failed tasks during 5 test performs

Model

Number of failed task in different test
--
First run Second run Third run Fourth run Fifth run

Markov chain without classification 0 0 0 0 0
Markov chain with 5 classes 0 0 0 0 0
Markov chain with 10 classes 0 0 0 0 0
Mean model without classification 583 0 186 107 0
Mean model with 5 classes 258 0 0 0 0
Mean model with 10 classes 225 0 0 0 0
Auto correlation without tasks classification 628 0 187 108 0
Auto correlation with 5 classes 296 45 0 0 0
Auto correlation with 10 classes 225 30 0 0 0

the results show any class of visited the 0 state in the
Markov chain state diagram; it means proposed model
failed to perform tasks within a deadline.

RESULTS

In this section, we show how CloudSim was set to
implement our prototype. Also, we evaluate that
prototype with the achieved results to show how the
proposed prediction model can predict the future
demand.

CloudSim setting: In this experiments, we settled a
cloud environment in CloudSim and we considered five
data centers to provide a large number of available
resources in the resource pool. VMs are considered to
have the same specification with VM in Amazon EC2.
This experiment performed for 24 times to reach the
maximum user sharing. Also, we considered 80% for
stable point for resource utilization. System distillate
data from received tasks based on the size of cloudlet
and the number of requested CPUs. The maximum
number of users considered a million (a big amount of
users) then model with or without classification has the
best effort to share resources among these customers.
During a learning part, we used a simple time series
MA(2) to reconsider some resources separately in each
class. Also, VMs will be allocated exclusively to each
class. At the end of the phase, each class would be in
one of the six situations that are defined in Table 1. For
evaluation part, we implemented Markov chain model
to turn Cloud to a deterministic host for real-time tasks
(Table 2).

Evaluation metrics: In this study, according to the
objectives that we've been looking for, several metrics
computed and compared to evaluate the performance of
our model. The first objective of this research was to
design a model that would ensure that, in the face of

real-time tasks does not violate the time limit. For this
reason, the number of time limit violation in all model
reviewed and compared. The second objective is truly
important, we want to know how our model is efficient
and following metrics have been studied. The RMSE
were considered to evaluate the efficiency of models
and R2 were used to determine how models are
accurate. Also, the number of users: to understand
which models are successful in sharing resources
among more users, have been used as an evaluation
metric, as well as the average of CPU utilization has
been considered to understand the correlation between
tasks failure and utilization.

Evaluation results: In the first experiment, we
performed model without any classification and the
following transition matrix Eq. (7) and state diagram
have been achieved (Fig.10) after 24 time performs:

 ݔ݅ݎݐܽܯ	݊݅ݐ݅ݏ݊ܽݎܶ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 0
0 0 0
0 0.50 0.50

0 0 0
0 0 1.00
0 0 0

0 0 1
0 0 0
0 0.42 0.16

0 0 0
0 0 0
0 0 ے0.42

ۑ
ۑ
ۑ
ۑ
ې

 (7)

This experiment clearly shows our model can

perform tasks within a time limit without any deadline
violation because it has never met the state zero. As we
explained before in Table 1; state zero happens when
we have a deadline violation.

In next experiments we evaluate our model with
tasks classification in the first step we distributed our
tasks in 5 different classes. The state diagram (Fig. 11)
and the transition matrix have been achieved as follow
Eq. (8):

Res. J. Inform. Technol., 7(1): 1-13, 2016

10

Fig. 12: Markov chain state diagram with 10 classes

Transition matrix

 (8)

The results show the proposed model has never
visited the state zero the same as the previous
experience we did not have any failed tasks. For the
third experience, we performed our model with ten
classes then the following results have been achieved
Eq. (9) (Fig. 12). The third experiment results also
show the model with ten classes has never visited the
state zero:

Transition Matrix

 (9)

We used some non-feedback based model for
training processes such as autocorrelation and Mean
model for prediction. These models used with the
maximum user sharing and performed for five times as
like as the proposed model. Also, the classification has
been used to improve the results, but the achievements
show very clear the autocorrelation and Mean model
cannot guarantee the deadline violation never happen.
Also, the results show the recovery plan to avoid failure
in all model works well. The whole model after five
times performing reached to zero number of failed
tasks. In a subsequent experiment, the number of end
users after five times perform were identified.

The Table 3 shows how the proposed model is
successful to share resources among more users. As the
results show the failed recovery strategy decreased the
number of end users until the Cloud system reaches a
steady state. The Markov models-with or without
classification-remain steady during five times
performing.

Table 4 shows how many CPUs our real-time tasks
received during these experiments. It is very clear the
failure recovery strategy increased the resource share to
solve the overloaded CPUs problem. Otherwise,
proposed models (the Markov models with or without
classifications) has reached to the state 3 in the Markov
chain state diagram. The state 3 has a duty to stabilized
Cloud system and establish load balancing. Also in all
the experiments with ten classes of tasks, less number
of CPUs absorbed, although according to the Table 4
they reached better user sharing (Table 5).

In all the experiments that have been tried the
average of CPU utilization placed around 80%, because
we reached to the following table in different tests.
Hence, to find which model has better convergence
(more than 80%) for utilization, all of the models
evaluated. Table 6 shows the mean model and

Table 3: Number of users that resources are shared among them

Model

Number of end users in different test

First run Second run Third run Fourth run Fifth run

Markov chain without classification 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000
Markov chain with 5 classes 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000
Markov chain with 10 classes 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000 1, 000, 000
Mean model without classification 1, 000, 000 500, 000 500, 000 250, 000 125, 000
Mean model with 5 classes 1, 000, 000 268, 817 268, 817 268, 817 268, 817
Mean model with 10 classes 1, 000, 000 617, 284 617, 284 617, 284 617, 284
Auto correlation without tasks classification 1, 000, 000 500, 000 500, 000 250, 000 125, 000
Auto correlation with 5 classes 1, 000, 000 294, 118 222, 892 222, 892 222, 892
Auto correlation with 10 classes 1, 000, 000 617, 284 601, 411 601, 411 601, 411

Table 4: The number of allocated CPUs

Model

Number of allocated CPUs to real-time workload

First run Second run Third run Fourth run Fifth run

Markov chain without classification 22946 22882 23010 22850 22978
Markov chain with 5 classes 23290 23162 23226 23226 23114
Markov chain with 10 classes 15804 15484 15884 16540 18204
Mean model without classification 26 2272 24386 21378 15010
Mean model with 5 classes 186 570 3306 8234 13994
Mean model with 10 classes 810 1310 2428 3420 4524
Auto correlation without tasks classification 10 496 22786 20546 15138
Auto correlation with 5 classes 170 332 1626 4890 9466
Auto correlation with 10 classes 810 1134 1660 2172 2540

Res. J. Inform. Technol., 7(1): 1-13, 2016

11

Table 5: Situations based on utilization
Utilization Risk
Utilization<0.4 No risk for task failure and ready to share between more customers
0.4<Utilization<0.8 Low risk for task failure, and ready to absorb a little bit more resources and share resources between more users
0.8<Utilization≤1 High risk for task failure, and ready to absorb more resources and share resources between more users
Utilization = 1 and there is a
long waiting task queue

Very high risk for task failure No more resource sharing and system need more resources to solve the
overloading problem

Table 6: The average of utilization

Model

The average of utilization percentage

First run Second run Third run Fourth run Fifth run

Markov chain without classification 80.93 79.8 80.93 79.08 80.36
Markov chain with 5 classes 81.11 83.87 83.56 83.08 83.11
Markov chain with 10 classes 131.15 112.07 101.77 87.64 83.78
Mean model without classification 19707 1085 67.23 50.46 32.45
Mean model with 5 classes 4031.17 1997.32 1396.82 517.13 147.22
Mean model with 10 classes 2150 554.7717 554.77 372.44 334.09
Auto correlation without tasks classification 24678 4721 70.25 53.62 37.84
Auto correlation with 5 classes 5244.83 2337.58 1691.93 1161 424
Auto correlation with 10 classes 2140.209 567.62 47.03 372.25 308.63
The percentage over 100 means overloading and there is a waiting task queue

Fig. 13: The amount of RMSE

Table 7: The amout of R2
Model R2
Markov chain without classification 0.7078
Markov chain with 5 classes 0.9321
Markov chain with 10 classes 0.9668
Mean model without classification 0.9901
Mean model with 5 classes 0.5963
Mean model with 10 classes -0.6372
Autocorrelation without tasks classification 0.9921
Autocorrelation with 5 classes 0.317
Autocorrelation with 10 classes -0.8480

autocorrelation prediction model have been caused the
worth utilization in Cloud host in comparision with
Markov chain prediction model.

When we look at the results in Table 6 and 2, Mean
and Autocorrelation models were overloaded in first
perform and the number of failed tasks are two high.
However, failure recovery strategy shows its impact on
the results from the second run. The number of deadline
violation decreased since utilization had been
improved, although it seems there is no convergence of

utilization for prediction models based on the Mean and
Auto Correlation.

Figure 13, we compute RMSE of models to
evaluate which one of models is more efficient than the
others. As you can see the Markov chain models with
or without classification have better results among other
models. The impact of classification shows the number
of classes has a positive effect on efficiency.

In the last test models were evaluated in terms of
the precision. As we mentioned before in “evaluation
metrics”; R2 is a common evaluation metric to find how
much prediction model is accurate. This metric has
been computed for all models (Table 7), the nearest R2
to 1 has the best accuracy.

DISCUSSION

In this study, a new multi-objective model
proposed and a new model to predict the demands and
anomalies described. This model shared resources to
prepare this host ready for performing real-time
workload among more customers in Cloud system. The
experiments showed feedback based prediction model
can perform real-time tasks in Cloud system. However,
there is no guarantee for Cloud to perform real-time
tasks without any deadline violation. The proposed
model can identify the required resources for real-time
tasks (i.e., by using the Markov chain, a predictive
model and automatic adaptive resource scaling and
sharing). Cloud infrastructure providers adopted our
approach not only to offer their customers with
response time guarantees but also to minimize the
resources allocated to the customers. It is difficult to
say that task classification had a positive impact in all
aspects. The experiments showed all models with task
classification had slow convergence to reach the 80% of
CPU utilization, but the proposed model improved the
prediction efficiency and accuracy.

Res. J. Inform. Technol., 7(1): 1-13, 2016

12

One of the way to extend this system is to support
Real-time economic model on a cloud. Another way is
to extend resource scaling strategy, which is currently
only used to attract inexpensive resources, absorb idle
resources and migrate them to associate with
overloaded resources in advance in order to overcome
the virtual machine boot-up latency problem is another
open way for reasearchers.

ACKNOWLEDGMENT

Authors confirms there is no any Conflict of Interest

REFERENCES

Anderson, J.M., L.M. Berc, J. Dean, S. Ghemawat,
M.R. Henzinger and et al., 1997. Continuous
profiling: Where have all the cycles gone? ACM
Trans. Comput. Syst., 15(4): 357-390.

Bible, C.C., W. Publishing and J. Wiley, year. Cloud
Computing Bible. Wiley Publishing.

Buttazzo, G.C., 2011. Hard RealTime Computing
Systems: Predictable Scheduling Algorithms and
Applications. 3rd Edn., Springer Publishing
Company.

Calzarossa, M. and G. Serazzi, 1993. Workload
characterization: A survey. Proceedings of the
IEEE, 81(8): 1136-1150.

Cully, B., G. Lefebvre, D. Meyer, M. Feeley, N.
Hutchinson and A. Warfield, 2008. Remus: High
availability via asynchronous virtual machine
replication. Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI'08), pp: 161-174.

Deng, Y., X. Meng and J. Zhou, 2012. Self-similarity:
Behind workload reshaping and prediction. Future
Generat. Comput. Syst., 28(2): 350-357.

Dick, S., O. Yazdanbaksh, X. Tang, T. Huynh and J.
Miller, 2014. An empirical investigation of Web
session workloads: Can self-similarity be explained
by deterministic chaos? Inform. Process. Manage.,
50(1): 41-53.

Dinda, P.A., 2008. Design, implementation and
performance of an extensible toolkit for resource
prediction in distributed systems. Ieee t. parall.
Distribut. Syst., 17(2): 160-173.

Doulamis, N., A. Doulamis, A. Litke, A. Panagakis, T.
Varvarigou and E. Varvarigos, 2007. Adjusted fair
scheduling and non-linear workload prediction for
QoS guarantees in grid computing. Comput.
Communi., 30(3): 499-515.

Eisenreich, K., G. Hackenbroich, V. Markl, P. Rosch
and R. Schulze, 2011. Handling of uncertainty and
temporal indeterminacy for what-if analysis. In:
Castellanos, M., U. Dayal and V. Markl (Eds.):
BIRTE 2010, LNBIP 84, Springer-Veralge Berlin
Heidelberg, pp: 100-115.

Elnaffar, S. and P. Martin, 2009. The psychic-skeptic
prediction framework for effective monitoring of
DBMS workloads. Data Knowl. Eng., 68(4):
393-414.

Fredericks, E. and D.R. Schneider, 2009. Annals of
Information Systems. In: Frada, B., B. Patrick and
Z. Arkady (Eds.): Springer New York Dordrecht
Heidelberg London.

García, A.G., I.B. Espert and V.H. García, 2014. SLA-
driven dynamic cloud resource management.
Future Generat. Comput. Syst., 31(1): 1-11.

Gregoriades, A. and A. Sutcliffe, 2008. Workload
prediction for improved design and reliability of
complex systems. Reliab. Eng. Syst. Safety, 93(4):
530-549.

Hameed, A., A. Khoshkbarforoushha, R. Ranjan, P.P.
Jayaraman, J. Kolodziej and et al., 2014. A survey
and taxonomy on energy efficient resource
allocation techniques for cloud computing systems.
Computing, DOI 10.1007/s00607-014-0407-8.

Hutchison, D. and J.C. Mitchell, 2005. Lecture Notes in
Computer Science. Springer, Berlin.

Islam, S., J. Keung, K. Lee and A. Liu, 2012. Empirical
prediction models for adaptive resource
provisioning in the cloud. Future Generat. Comput.
Syst., 28(1): 155-162.

Jiang, Y., C.s. Perng, T. Li and R. Chang, 2011. ASAP:
A self-adaptive prediction system for instant cloud
resource demand provisioning. Proceeding of the
IEEE 11th International Conference on Data
Mining (ICDM), pp: 1104-1109.

Kousiouris, G., A. Menychts, D. Kyriazis and S.
Gogouvitis, 2014. Dynamic, behavioral-based
estimation of resource provisioning based on high-
level application terms in Cloud platforms. Future
Generat. Comput. Syst., 32: 27-40.

Kuang, S.R., K.Y. Wu, B.C. Ke, J.H. Yeh and H.Y.
Jheng, 2014. Efficient architecture and hardware
implementation of hybrid fuzzy-Kalman filter for
workload prediction. Integrat. VLSI J., 47(4):
408-416.

Kusic, D. and N. Kandasamy, 2007. Risk-aware limited
lookahead control for dynamic resource
provisioning in enterprise computing systems.
Proceeding of the IEEE International Conference
on Autonomic Computing (ICAC '06), pp: 74-83.

Leitner, P., B. Wetzstein, F. Rosenberg, S. Dustdar and
F. Leymann, 2010. Runtime Prediction of Service
Level Agreement Violations for Composite
Services. In: Dan, A., F. Gittler and F. Toumani
(Eds.): ICSOC/ServiceWave 2009, LNCS 6225,
Springer-Verlage Berlin Heidelberg, pp:176-186.

Mallick, S., G. Hains and C.S. Deme, 2012. A resource
prediction model for virtualization servers.
Proceeding of the 2012 International Conference
on High Performance Computing and Simulation
(HPCS), pp: 667-671.

Res. J. Inform. Technol., 7(1): 1-13, 2016

13

Mian, R., P. Martin and J.L. Vazquez-Poletti, 2013.
Provisioning data analytic workloads in a cloud.
Future Generat. Comput. Syst., 29(6): 1452-1458.

Ren, G., E. Tune, T. Moseley, Y. Shi, S. Rus, R. Hundt,
2010. Google-wide profiling: A continuous
profiling infrastructure for data centers. IEEE
Micro (2010), pp: 65-79.

Sallam, A., K. Li, A. Ouyang and Z. Li, 2014. Proactive
workload management in dynamic virtualized
environments. J. Comput. Syst. Sci., 80(8):
1504-1517.

Sharma, B., V. Chudnovsky, J.L. Hellerstein, R. Rifaat
and C.R. Das, 2011. Modeling and synthesizing
task placement constraints in Google compute
clusters. Proceedings of the 2nd ACM Symposium
on Cloud Computing (SOCC ’11), pp: 1-14.

Su, S., J. Li, Q. Huang, X. Huang, K. Shuang and J.
Wang, 2013. Cost-efficient task scheduling for
executing large programs in the cloud. Parallel
Comput., 39(4): 177-188.

Sun, Y.S., Y.F. Chen and M.C. Chen, 2013. A
workload analysis of live event broadcast service in
cloud. Procedia Comput. Sci., 19: 1028-1033.

Systems, A.R., 2012. Advances in Real-Time Systems.
Springer Heidelberg Dordrecht London, New
York.

Thottan, M., G. Liu and Ji, C. Anomaly, 2010.
Algorithms for Next Generation Networks. In:
Cormode, G. and M. Thottan, (Eds.): Algorithms
for Next Generation Networks, Computer
Communications and Networks. Springer London,
pp: 239-261.

Tobaruela, G., W. Schuster, A. Majumdar, W.Y.
Ochieng, L. Martinez and P. Hendrickx, 2014. A
method to estimate air traffic controller mental
workload based on traffic clearances. J. Air Transp.
Manage., 39: 59-71.

Verboven, S., K. Vanmechelen and J. Broeckhove,
2013. Black box scheduling for resource intensive
virtual machine workloads with interference
models. Future Generat. Comput. Syst., 29(8):
1871-1884.

Wang, W., 2012. Dynamic Reconfi guration in Real-
Time Systems. In: Weixun, W., M. Prabhat and R.
Sanjay (Eds.): Springer New York Heidelberg
Dordrecht London.

Weingärtner, R., G.B. Bräscher and C.B. Westphall,
2015. Cloud resource management: A survey on
forecasting and profiling models. J. Network
Comput. Appl., 47: 99-106.

Yin, J., X. Lu, H. Chen, X. Zhao and N.N. Xiong, 2014.
System resource utilization analysis and prediction
for cloud based applications under bursty
workloads. Inform. Sci., 279: 338-357.

Zhang, Q., J.L.Hellerstein and R. Boutaba, 2011.
Characterizing task usage shapes in google’s
compute clusters. Proceeding of the Large Scale
Distributed Systems and Middleware Workshop
(LADIS 2011).

