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Abstract: The aim of this paper is to study the minimax estimation of the generalized exponential distribution. 
Bayesian estimators and minimax estimators of the parameter of the generalized exponential distribution have been 
obtained under the well known weighted square error loss, square log error loss and Modified Linear Exponential 
(MLINEX) loss functions. Finally, Monte Carlo simulation is used to compare the efficiency of these minimax 
estimators by using mean square error. 
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INTRODUCTION 

 
Generalized exponential distribution has been used 

as an alternative to gamma and Weibull distributions in 
many situations by Gupta and Kundu (1999). In recent 
years, an impressive array of papers has been devoted 
to study the behavioral patterns of the parameters of the 
generalized exponential distribution using both classical 
and Bayesian approach, a very good summary of this 
work can be found in Gupta and Kundu (1999, 2008), 
Raqab and Madi (2005) and Singh et al. (2008) and the 
references cited there for some recent developments on 
GE distribution. 

Suppose X be a random variable from generalized 
exponential distribution (GE (θ)) if the Probability 
Density Function (PDF) is given by: 
 

0,0,)1();( 1 >>−= −−− θθθ θ xeexf xx            (1) 
 
where, θ is the shape parameter.  

The minimax estimation is an upgraded non-
classical approach in the estimation area of statistical 
inference, which has drawn great attention by many 
researchers. Podder et al. (2004) studied the minimax 
estimator of the parameter of the Pareto distribution 
under Quaratic and MLINEX loss functions. Dey 
(2008) studied the minimax estimator of the parameter 
of Rayleigh distribution. Shadrokh and Pazira (2010) 
studied the minimax estimator of the parameter of the 
minimax distribution under several loss functions. 

In this study, weighted square error loss, log error 
squared error and MLINEX loss functions have been 
used to obtain the minimax estimators of the parameter 
of the GE (θ) distribution.  

PRELIMINARIES 
 

Let X1, X2, …, Xn be a sample from the generalized 
exponential distribution (1) and ),,,( 21 nxxxx Κ=  is the 
observation of X = (X1, X2, …, Xn). The Likelihood 
Function (LF) of θ for the given sample observation is:  
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where, ݐ ൌ  ∑ െ lnሺ1 െ ݁ି௫ሻ

 ୀଵ  is the observation of 
ܶ ൌ  ∑ െ lnሺ1 െ ݁ିሻ

 ୀଵ . 
The maximum likelihood estimator of θ is easily 

derived as: 
 

T
n

M =θ̂                   (4) 

 
And we can also show that ܶ ൌ  ∑ െ lnሺ1 െ

 ୀଵ
݁െܺ݅ሻ

 
is distributed the Gamma distribution Γ ሺn, θሻ. 

In the Bayes approach, we further assume that 
some prior knowledge about the parameter θ is 
available to the investigation from past experience with 
the exponential model. The prior knowledge can often 
be summarized in terms of the so-called prior densities 
on parameter space of θ. In the following discussion, 
we assume the following Jeffrey’s non-informative 
prior density defined as: 
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In Bayesian estimation, the loss function plays an 

important role and the squared error loss as the most 
common symmetric loss function is widely used due to 
its great analysis properties. And the weighted Square 
Error Loss Function (SELF): 
 

2
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θ
θδδθ −

=L                  (6) 

 
which is a symmetrical loss function that assigns equal 
losses to overestimation and underestimation. However, 
in many practical problems, overestimation and 
underestimation will make different consequents. 
 
The squared log error loss function: Thus using of 
the symmetric loss function may be inappropriate; 
Brown (1968) proposed a new loss function for scale 
parameter estimation. This loss that is called squared 
log error loss is: 
  

2)ln(ln),( θδδθ −=L                 (7) 
 
which is balanced and ∞→),( δθL as 0→δ or∞ . This 

loss is not always convex, it is convex for ఋ
ఏ

 ݁ and 
concave otherwise, but its risk function has minimum 
w.r.t.: 
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The MLINEX loss function: Varian (1975) and 
Zellner (1986) proposed an asymmetric loss function 
known as the LINEX function, which is suitable for 
situations where overestimation is more costly than 
underestimation. 

When estimating a parameter θ by ߠ, the MLINEX 
is given by (Podder et al., 2004): 
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Remark 1: For any prior distribution of θ, under the 
MLINEX loss function (8), we can show that the Bayes 
estimator of θ, denoted by ߜመெ, is given by: 
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Bayes estimation: Combining (3) with non-informative 
prior (5) using Bayes theorem, the posterior pdf of θ is 
given by: 
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This is a Gamma distribution ),( TnΓ . Then: 
 
• The Bayes estimator under the weighted square 

error loss function is given by: 
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• Using (10): 
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is a Digamma function. 

Then the Bayes estimator under the squared log 
error loss function is come out to be: 
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• Using (10), the Bayes estimator under the 

MLINEX loss function is obtained as: 
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MINIMAX ESTIMATION 

 
The derivation of minimax estimators depends 

primarily on a theorem due to Lehmann which can be 
stated as follows: 
 
Lemma 1: (Lehmann’s Theorem) (Brown, 1968) If 

{ }Θ∈= θτ θ ;F  be a family of distribution functions and 
D a class of estimators of θ. Suppose that D∈•δ  is a 
Bayes estimator against a prior distribution ( )θδ •  on 
Θ  and ( )θδ ,•R  equals constant on Θ ; then •δ  is a 
minimax estimator of θ. 
 
Theorem 1: Let X1, X2, …, Xn be a random sample 
drawn from the density (1), then ߜመௌ ൌ  ିଶ

்
 is the 
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minimax estimator of the parameter θ for the weighted 
square error loss (6). 
 
Theorem 2: Let X1, X2, …, Xn be a random sample 

drawn from the density (1), then ߜመௌ ൌ  ಇሺሻ

்
 is the 

minimax estimator of the parameter θ for the squared 
log error loss (7). 
 
Theorem 3: Let X1, X2, …, Xn be a random sample 
drawn from the density (1), then: 
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is the minimax estimator of the parameter θ for the 
MLINEX loss (8). 
 
Proof: First we have to prove the theorem 1. To prove 
the theorem we shall use Lehmann’s theorem, which 
has been stated before. For this, first we have to find the 
Bayes estimator δ of θ. Then if we can show that the 
risk of d is constant, then the theorem 1 will be proved. 
The risk function of the estimator ߜመௌ ൌ  ିଶ

்
 is: 
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Then, ܴ ሺߠሻ ൌ  ଵ

ିଵ
 which is a constant. So, according 

to the Lehmann’s theorem it follows that, ߜመௌ ൌ  ିଶ
்

 is 
the minimax estimator for the parameter θ of the 
generalized exponential distribution under the quadratic 
loss function (7). 

Now we are going to prove the theorem 2. The risk 
function of the estimator:  
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Using the fact: 
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where, )1,(~ nY Γ . Then we can show that: 
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Then we get the fact: 
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Then ( ) )(nR Ψ′=θ , which is a constant. So, 

according to the Lehmann’s theorem it follows that, 
መௌߜ ൌ  ಇሺሻ

்
 is the minimax estimator for the parameter 

θ of the generalized exponential distribution under the 
squared log error loss function (8). 

Now we give the proof of the case of Theorem 3. 
The risk function under the MLINEX loss function (9) 
is: 
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Table 1: Estimated value and corresponding ER (ߠ)  
n Criteria ߜመெ ߜመௌ መௌߜ መெெc = 2.0ߜ መெெc = 1.0ߜ መெெc  = -1.0ߜ
10 Estimated value  1.1158 0.8927 1.0605 1.1158 1.0042 0.9468 

ER (ߠ) 0.1701 0.1118 0.1452 0.1701 0.1269 0.1156 
20 Estimated value 1.0522 0.9469 1.0260 1.0522 0.9995 0.9729 

ER (ߠ) 0.0638 0.0523 0.0587 0.0638 0.0551 0.0529 
50 Estimated value 1.0221 0.9812 1.0119 1.0221 1.0017 0.9914 

ER (ߠ) 0.0222 0.0203 0.0214 0.0222 0.0208 0.0205 
75 Estimated value 1.0153 0.9882 1.0086 1.0153 1.0018 0.9950 

ER (ߠ) 0.0142 0.0133 0.0138 0.0142 0.0136 0.0134 
100 Estimated value 1.0103 0.9901 1.0052 1.0103 1.0002 0.9951 

ER (ߠ) 0.0104 0.0100 0.0102 0.0104 0.0101 0.0100 
 

Then ( ) )]([ln ncKwR c Ψ+= −θ , which is a constant. 
So, according to the Lehmann’s theorem it follows that, 
መெெߜ ൌ  ଵ

்
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ሺିሻ
ሿଵ/ is the minimax estimator for the 

parameter θ of the generalized exponential distribution 
under the MLINEX loss function (9). 

 
EMPIRICAL STUDY 

 
The risks under squared-error loss of the estimates 

are considered to compare the different estimators of 
the parameter θ of the generalized exponential 
distribution that are obtained by maximum likelihood 
and minimax methods for weighted square error loss, 
squared log error error loss and MLINEX loss 
functions:  
 
• Based on the given value θ = 1.0, a sample of size 

n is then generated from the density of the 
Generalized Exponential distribution (1), which is 
considered to be the informative sample 

• The MLE and minimax estimators is calculated 
based  on  Section 3  and   in   loss   function  (6),  
c = -1.0, 1.0, 2.0 

• Steps (1) to (2) are repeated N = 5000, times and 
the risks under squared error loss of the estimates 
are computed by using: 
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where ߠ is the estimate at the ith run.  

 
CONCLUSION 

 
The estimated values of the parameter and ER of 

the estimators are computed by the Monte-Carlo 
Simulation method from the generalized exponential 
distribution (1) with 0.1=θ . It is seen that for small 
sample sizes (n<50), minimax estimators for MLINEX 
loss function when c = 1.0 appear to be better than the 
other minimax estimators. But for large sample sizes 
(n>50), all the three estimators have approximately the 
same ER. The obtained results are demonstrated in the 
Table 1. 
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