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Abstract: A test proposed for testing the null hypothesis that two life distributions are equal against the alternative 
that one is more Decreasing Mean Residual Life (DMRL) ordering. The asymptotic normality of the proposed test 
statistic was also established. The empirical size and empirical power of the proposed test are simulated for some 
specific families of distributions like beta and Weibull that are ordered with respect to more DMRL order. Finally, 
we apply our test to some real data sets. 
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INTRODUCTION 

 
Partial orderings of life distributions as more 

Decreasing Mean Residual Life (more DMRL) used in 
many systems such as biological, physical and 
mechanical systems to compare the aging properties of 
two arbitrary life distributions. We mean, an older 
system has a shorter remaining life time than a newer 
one (Hollander and Proschan, 1984). 

 Let X be a non-negative random variables with 
absolutely continuous distribution function F. It is said 
that F has Decreasing Mean Residual Life (DMRL) if 

)(/)(=)( xFduuFx
xF ∫
∞

µ  is decreasing in 0≥x . If ℑ  

is the class of distribution function F on ][0,∞ , with 

0=(0)F . Let F, G ∈  ℑ  have )(xFµ , )(xGµ , 
then F is more decreasing mean residual life than G and 
write GF DMRL<  if ))(())/(( 11 uGuF GF

−− µµ  is non-
increasing in [0,1]∈u  or )(1 uWW GF ο−  is star-shaped in 

[0,1]∈u , where FW  and GW  are proper distribution 

functions on [0,1]. They are related to the scaled total 
time on test transform )(=)( 1 uHuW FF

− , where 

)(=)( 11 uFFuH eF
−− ο  and )(uF e  is the equilibrium 

survival function. 
Pandit and Gudaganavar (2009) and Pandit and 

Inginashetty (2012) discussed test the null hypothesis 
that F is equivalent to G against the alternative 
hypothesis that F is more IFR than G, Izad and Khaledi 
(2012) discussed the above problem against the 
alternative hypothesis that F is more IFRA than G also 
Hollander et al. (1986), Lim et al. (2005) and Pandit 

and Math (2012) discussed the above problem against 
the alternative hypothesis that F is more NBU than G.  

In material and methods section we propose a new 
test for testing that the null hypothesis that F is 
equivalent to G against the alternative hypothesis that F 
is more DMRL than G (F < DMRL G).  
 
The Proposed two-sample more DMRL ordering 
test: Let 

nXX ,...,1
 and 

mYY ,...,1
 denote two random 

samples from absolutely continuous distribution 
functions F and G, survival functions  and  and 
density functions f  and g, respectively.  

Since 
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increasing in [0,1]∈u ⇔ 0, ≥∆ GF , [0,1]∈u , where, 
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For a distribution H with density h, define: 
 

 )()()(=)(
0

xdHxhxH ν∫
∞

∆  
 
and: 
 

 )()(=)(=),( ,

1

0
GFduuGF GF ∆−∆∆∫δ  

 
We use ),( GFδ  to test the null hypothesis 

GFH DMRL=:0
 against the alternative hypothesis 

GFH DMRL≤:1  and GF DMRL≠ . As introduced by 
Ahmad (2000), the function )(F∆ can be estimated by: 
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And nF  is empirical distribution of F. The function k in (1) is a known symmetric and bounded probability 

density function with mean 0 and finite variance 2
kσ  and }{ na  is a equence of positive real numbers such that 0→na  

as ∞→n . The density function K is known as kernel function and sequence }{ na  is known as bandwidth 
(Silverman, 1986). 

Also, let bm be a sequence of positive real numbers such that 0→mb  as ∞→m , then similar to )(ˆ F∆ , )(ˆ G∆  can 
be estimated by:  
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and: 
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And Gm is empirical distribution of G. Now, the test statistic: 
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Can be used to test GFH DMRL=:0  against GFH DMRL<:1  and GF DMRL≠ . We need the following theorem 

due to Ahmed (2000) to obtain the asymptotic distribution of test  statistic.  
 
Theorem 1: If ∞→nna  and 04 →nna , If f has bounded first and second derivative and if 0>)ˆ( FnVlim ∆ , the 

)ˆ( Fn ∆→∆  is asymptotically with mean 0 and variance 2
Fσ  given by:  
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Theorem 2: Let na  and mb  be two sequences of positive real numbers such that: 
  
• 0→na , ∞→nna  and 04 →nna  as .∞→n  
• 0→mb , ∞→mmb  and 04 →mmb  as .∞→m  

• For all Nnm ∈,  and some constant ]
2
1(0,∈c  we have that:  

1,<1<0 c
N
nc −≤≤  where mnN +=  

 
If f and g have bounded first and second derivatives such that for all combination of 1,2,=p  1,2,3=q  and .2=r   
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Then as ,),( ∞→mnmin )),(),(ˆ( GFGFn δδ −  is asymptotically normal with mean 0 and variance 2

,gfσ  
given by:  
 

222
, = gfgf m

N
n
N σσσ +  

 
where, 2

fσ  is given in 3 and 2
gσ  is defined similarly.  

 
Proof: The proof of the required result is based on Theorem (1) and the fact that generally convergence in the 
distribution is closed under the convolution. 
We use the following lemma to show that in Theorem (3) that 2

,ˆ gfσ  given by: 
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Is the consistent estimator of 2

,gfσ . 
  

Lemma 1: Let na  be a sequence of positive real numbers such that ∞→2
nna  as ∞→n  and let f  be uniformly 

continuous. Then: 
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• )()(ˆ FF p ∆→∆ , if )()()( xdFxfx qpν∫  is finite for (1,1)(1,0),),( ∈qp  and 
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is finite for (2,2)(2,1),(2,0),),( ∈qp .  

 
Proof: (i) Using triangular inequality, we have that: 
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Since ,<)( ∞∆ F  the weak law of large numbers implies that 0→nB  in probability as:  
 

∞→n  
  
Next, it is clear that:  
  

)]()()()(ˆ[|)()(ˆ| xdFxxdFxxfxfsupA nnnn νν ∫∫ +−≤
 

 
Using the assumptions that f is uniformly continuous and ∞→2

nna  as ,∞→n  it follows from Theorem 3A of 

Parzen (1962) that |)()(ˆ| xfxfsup n −  converges to 0 in probability. On the other hand, by the weak law of large 
numbers we have that:  
  

)()()()(ˆ xdFxpxdFx nn νν ∫∫ →  

 
Hence, 0→nA  in probability as ∞→n  and proof of part (i) is completed. 

 
• In this case we also have that: 
 

|)()}()()(ˆ)(ˆ{||)()()()()(ˆ)(ˆ| 22222222 xdFxfxxfxxdFxfxxdFxfx nnnnnn νννν −≤− ∫∫∫  
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By the weak law of large numbers, Bn  converges to 0 in probability as ∞→n  since by assumption 

∞∫ <)()()( 22 xdFxfxν . It is easy to see that:  

 
)]()()()()(ˆ)(ˆ[|)()(ˆ| 22 xdFxfxxdFxfxxfxfsupA nnnnnn νν ∫∫ +−≤                                                          (5) 

 
Now, by assumption that ∞→2

nna  as ∞→n , the first term on the right hand side of (5) converges in 
probability to 0 by Theorem 3A in Parzen (1962). The second term in the bract, on the right hand side of 5, by the 
weak law of large numbers, converges to )()()(2 xdFxfxν∫  as ∞→n , since ∞∫ <)()()(2 xdFxfxν . On the other 

hand, since ∞∫ <)()(2 xdFxν , replacing )(xν  with )(2 xν  in (4) we obtain that: 
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when, 
 

∞→2
nna  as ∞→n  
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Combining these observations, the required result of 
part (ii) follows. 
 
Theorem 3: Let {an} and {bm} be two sequences, of 
positive real numbers such that: 
  

∞→2
nna  as ∞→n  

∞→2
mnb  as ∞→m  

 
and:  
 

Let )()()( xdFxfx qpν∫  be finite for 

(2,2)}(2,1),(2,0),(1,1),{(1,0),),( ∈qp  and f  be 
uniformly continuous. Then 2

,
2

,ˆ gfpgf σσ →  as 
∞→),( mnmin .  

 
Proof: Since:  
 

)(ˆ)(ˆ)(ˆ=ˆ 2222 FdFxfx nnnf ∆−∫νσ  

  
)(ˆ)(ˆ)(ˆ=ˆ 2222 GdGxgx mmmg ∆−∫νσ  

  
 

It follows from 1 that 22ˆ fpf σσ →  and 22ˆ gpg σσ → as 
,),( ∞→mnmin  which in turn imply that 

2
,

2
,ˆ gfpgf σσ →  as ∞→),( mnmin .  

With the results of Theorem 2 and 3, it follows 
from Slutsky’s theorem that gfGFN ,ˆ)/,(ˆ σδ  is 
asymptotically standard normal and therefore we reject 
H0 in favor of H1 at level α if ασδ zGFN gf >ˆ)/,(ˆ

, , 
where, zα is )(1 α− -quantile of standard normal 
distribution.  
 
Empirical size and empirical power: We will use 
Weibull and beta families of distributions for 
simulation study to justify the power of our proposed 
test and the accuracy of the standard normal as a limit 
distribution of the test statistic under H0 (empirical 
size). The choice of Weibull family and beta family 
because are ordered according to more IFRA ordering 
(Chandra and Singpurwalla, 1981; Van Zwet, 1970; 
Izadi and Khaledi, 2012) then it is also ordered 
according to more DMRL. 
  
The algorithm of calculate the empirical size:  
 
• We take the following distributions as a kernel 

functions  
o Standard normal distribution: 

 

∞−∞− <<],
2
1[

2
1=)( 2 xxExpxf
π

  

o (Uniform distribution: 1<<1,
2
1=)( xxf −   

 
Because are bounded and symmetric distributions 

about 0 and have finite variance. 
 

• The samples size are given by n = m = 100, 200 
• The significance level α is given by α = 0.05, 0.1 
• For each significance level, preform 104 simulation 

run and compute the empirical size 
 

In Table 1 and 2, we compute the empirical size of 
the proposed test according to the above algorithm. The 
entries in these table show that the empirical size is 
increasing in m and n. Also the proposed test is 
powerful because the empirical size is similar to 
significant level α.  
 
The algorithm of calculate of the empirical power:  
 
• We take the following distributions as a kernel 

functions  
o Standard normal distribution 
o ∞−∞− <<],

2
1[

2
1=)( 2 xxExpxf
π

  

o Uniform distribution 1<<1,
2
1=)( xxf −   

 
Because are bounded and symmetric distributions 

about 0 and have finite variance. 
 

• The samples size are given by n = m = 10, 30, 40, 
50, 100. 

• The significance level α is given by α = 0.05, 0. 
• For each significance level, preform 104  

simulation run and compute the empirical size and 
obtain the number of rejections of H0. Dividing the 
number of rejections by 104, the empirical power 
are computed. 

 
In Table 3 and 4, we obtain the empirical powers of 

the proposed test according to  the above algorithm. We 
observe that the power of test is close to 1 when 

20== mn  for beta distribution. Also, when 
30== mn  the empirical power for Weibull 

distribution is large even for the cases when 
20== mn , 40== mn , 50== mn  and 

100== mn .  
 
Numerical example: Table 5 shows two sets of life test 
data corresponding to snubber designs of a toaster 
component taken from Table (8.3.1) of Nelson (1982). 
 

Ahmad (2000) showed that under the null 
hypothesis EFH DMRL=:0  (F is an exponential 
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Table 1: The empirical size of the proposed test when the kernel function is standard normal  
Distribution 
--------------------------------------------------- 

m = n = 100
--------------------------------------------

n = m = 200 
-----------------------------------------------

 F  G α = 0.05 α = 0.1 α = 0.05 α = 0.1
B (0.5, 1)  B (0.5, 1) 0.038 0.023 0.177 0.282
B (1.5, 1)  B (1.5, 1) 0.036 0.038 0.131 0.227
W (5, 1)  W (5, 1) 0.027 0.021 0.091 0.179
W(6,1)  W(6,1) 0.021 0.027 0.144 0.233
 
Table 2: The empirical size of the proposed test when the kernel function is uniform distribution (-1, 1)  
Distribution 
---------------------------------------------------- 

m = n = 100
----------------------------------------------- 

n = m = 200 
-----------------------------------------------

F G α = 0.05 α = 0.1 α = 0.05 α = 0.1
B (0.5, 1) B (0.5, 1) 0.058 0.064 0.120 0.130
B (1.5, 1) B (1.5, 1) 0.024 0.074 0.109 0.132
W (5, 1) W (5, 1) 0.031 0.048 0.122 0.135
W (6, 1) W (6, 1) 0.029 0.048 0.094 0.069
 
Table 3: The empirical power of the proposed test when the kernel function is standard normal 
Distribution 
---------------------------------------- 

Sample sizes 
-----------------------------------------------------------------------------------------------------------------------------

F G m = n = 20 m = n = 30 n = m = 40 n = m = 50 n = m = 100 
B (0.5,1) B (0.5, 1) 0.998 0.500 0.914 0.500 0.500 
B (1.5, 1) B (1.5, 1) 0.760 0.741 0.589 0.527 0.564 
W (5, 1) W (5, 1) 0.500 0.500 0.500 0.500 0.508 
W (6, 1) W (6, 1) 0.500 0.500 0.500 0.500 0.500 
 
Table 4: The empirical size of the proposed test when the kernel function is uniform distribution (-1, 1)  
Distribution 
--------------------------------------------- 

Sample sizes 
-----------------------------------------------------------------------------------------------------------------------------

F   G  m  = n = 20  m = n = 30  n = m = 40  n = m = 50  n = m = 100  
B (0.5, 1)   B (0.5, 1)   1   0.547   0.504   0.696  0.505  
B (1.5, 1)   B (1.5, 1)   1   0.500   0.584   0.500  0.500  
W (5, 1)   W (5, 1)   0.500   0.500   0.500   0.500  0.507  
W (6, 1)   W (6, 1)   0.500   0.992   0.500   0.543  0.500  

 
Table 5: Life test of two different snubber designs 
Old design 90- 90- 260- 410- 410- 485- 508- 631- 631- 631- 635- 658- 731- 739- 790- 855- 980- 980 
New design 47- 73- 145- 311- 490- 571- 575- 608- 575- 608- 608- 630- 670- 670- 838- 964- 964- 1198 
 
distribution), 

3
1=)(F∆  and 

3
1=2

fσ . Thus H0 is 

rejected in favor of alternative hypothesis 
EFH DMRL<:1  (F is not exponential distribution) at 

significance level α if .>)
3
1)(ˆ(3= αZFnH −∆  Now, 

to compute the statistic H for these data sets, select 
standard  normal  density function as the kernel 
function. For the old design data,  6.8227=H  with 

0.000=valueP −  and for the new design data 8.79876 
with 0.000=valueP − . Therefore, the test also 
confirms that the data-sets come from some DMRL 
populations. 

Now, to compute the statistic H for these data sets, 
select standard normal density function as the kernel 

function and let 5
2

=
−

nan . For the old design data, 
6.8227=H  with 0.000=valueP −  and for the new 

design data 8.79876 with 0.000=valueP− .  
Therefore, the test also confirms that the data-sets 

come from some DMRL populations. To compare these 
two data sets with respect to more DMRL order, 
assume that F is distribution function of the old design 
data and G is distribution function of new design data. 

Under these setting 5.92917=)/,(ˆ ,gfGFN σδ and 
0.000=valueP− .  

Thus, we conclude that the old and new designs are 
ordered according to more DMRL ordering. 
 

CONCLUSION 
 

In this study, we proposed a new test that two 
unknown distributions are identical against the other 
alternative that one is more DMRL than the other. We 
proof that the proposed test is asymptotically normal 
and consistent. Also presents two algorithm to compute 
the empirical size and empirical power. The results of 
computing the empirical size and empirical power are 
the empirical size is increasing as n and m increasing. 
The proposed test is powerful because the empirical 
size is similar to significant level α. 
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