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Abstract: In this study, we shall derive a logistic regression model for predicting the annual distribution of the 
proportion of road traffic casualties who die as a result of road traffic accidents in Ghana. Road traffic casualties are 
defined as road traffic victims who are injured or killed within 30 days of the accident. With 1991 as our reference 
year, we considered ten independent variables that are represented by each of the 10 years from 1992 to 2001. Using 
a significance level of 0.05, we show that the logistic regression coefficients for the years 1993, 1998, 1999, 2000 
and 2001 are significantly different from zero, while those of the remaining years are not significant. That is, there is 
little statistical justification for including coefficients for the years 1992, 1994, 1995, 1996 and 1998 in the model. 
The proposed model was used to estimate the number of road traffic fatalities from the year 2002 to 2011, a period 
of ten years and the results were compared with the actual fatalities. It was noted that all the calculated figures 
corresponding to the coefficients that were significantly different from 0 were within 10% of the actual figure and 
only one of the five coefficients, which were not significant, estimated road traffic fatality within 10% of its actual 
value. 
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INTRODUCTION 

 
The increasing population size, with a 

corresponding increase in the number of registered 
vehicles accompanied by rapidly expanding road 
network, has resulted in increase in Road Traffic 
Fatalities (RTFs). Shirley (2006) discovered that safe 
human behaviour is a major risk factor in accounting 
for Road Traffic Injuries (RTIs) especially in 
developing countries where it is estimated that 64 to 
95% of casualties are due to improper human activity 
by a driver, passenger or pedestrian. Unlike many fatal 
diseases, road traffic accidents kill people from all age 
groups including young and middle-aged people in their 
active years. Hesse and Ofosu (2014a) reported that a 
cumulative total of 17 436 fatalities is recorded over a 
10-year period from 2001 to 2010 where the highest 
fatalities during this period were in the 26-35 year old. 
Road traffic accidents are responsible for a far higher 
rate of death among men, by an approximate ratio of 
3:1 (Hesse and Ofosu, 2014b).  

Road traffic casualty refers to any road traffic 
accident victim injured or killed within 30 days of the 
accident. It should be pointed out that the European 

Economic Commission (EEC) and the World Health 
Organization (1979) have recommended a definition for 
road traffic accident fatalities which includes only 
deaths which occur within 30 days following the 
accident, since 93-97% of these fatalities take place 
within a one month period. A number of countries have 
not yet adopted this definition (World Health 
Organization, 1979). For example, in some countries, a 
road traffic fatality is recorded only if the victim dies at 
the site or is dead upon arrival at the hospital. In order 
to make comparison of accident statistics between 
countries reasonable, figures obtained from countries 
which have not adopted the 30-day fatality definition, 
should be properly adjusted. No adjustment is required 
for figures from countries such as Ghana, U.S.A and 
Great Britain, which have adopted the standard fatality 
definition.  

Table 1, adapted from the National Road Safety 
Commission (NRSC) of Ghana, shows the annual 
distribution of road traffic injuries and fatalities in 
Ghana, from 1991 and 2013. The road traffic accident 
statistics in 2013 represent a reduction of 15.3% in 
fatalities over the 2012 figure. The fatality figure of 1 
898  in  2013  is  the lowest since year 2007. Relative to  
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Table 1: Annual distribution of road traffic fatalities and injuries in 
Ghana from 1991 to 2013 

i Year 

Casualty 
-------------------------------

TotalFatality Injury 
1 1991 920 8773 9693
2 1992 914 9116 10030
3 1993 901 7677 8578 
4 1994 824 7664 8488
5 1995 1026 9106 10132
6 1996 1049 9903 10952
7 1997 1015 10433 11448
8 1998 1419 11786 13205
9 1999 1237 10202 11439
10 2000 1437 12310 13747
11 2001 1660 13178 14838 
12 2002 1665 13412 15077
13 2003 1716 14469 16185
14 2004 2186 16259 18445
15 2005 1776 14034 15810
16 2006 1856 14492 16348
17 2007 2043 14373 16416
18 2008 1938 14531 16469 
19 2009 2237 16259 18496
20 2010 1986 14918 16904
21 2011 2199 14020 16219
22 2012 2240 13001 15241
23 2013 1898 10611 12509
Total  36142 280527 316669
Percentage  11.41 88.59 100.00

 
the year 2001, the 2013 figure for fatalities (1 898) 
recorded an increase of 14.3%, indicating an upward 
trend. A cumulative total of 316 669 casualties were 
recorded over the 23-years period, where fatalities 
formed 11.4% of this figure. 

According to NRSC of Ghana report, the number 
of road traffic crashes in 2013 (i.e., 9 200) represents a 
decrease of 23.9 and 18% over the 2012 and 2001 
figures, respectively. The number of fatal crashes and 
their resulting fatalities in the previous year also saw a 
decrease. Compared to the 2012 figures, fatal crashes 
decreased in 2013 by 17% and fatalities by 15.3%. 
There was also a decrease of 17.9% in the overall 
number of casualties in 2013 compared with 2012. 
Relative to the year 2001, the 2013 figures for fatal 
accidents and fatalities recorded corresponding 
increases of 24.7 and 44.5%, respectively, whilst 
overall casualties recorded a decrease of 15.6%. 

In the logistic regression analysis of this data, road 
traffic casualty is considered as the response or 
dependent variable of interest and year as predictors. 
The response has two categories: fatality and injury. 
The general objective of this analysis is to describe the 
way in which casualty distribution of road traffic 
fatalities varies by year and use this variation to predict 
future distribution. Logistic regression was proposed, as 
an alternative to ordinary least squares, in the late 1960s 
and early 1970s (Cabrera, 1994), and it became 
routinely available in statistical packages in the early 
1980s. Since that time, the use of logistic regression has 
increased in the social sciences (e.g., Chuang, 1997; 
Janik and Kravitz, 1994; Tolman and Weisz, 1995) and  

in educational research, especially in higher education 
(Austin et al., 1992). 

Other studies have been conducted in the area of 
road traffic casualties in Ghana. Hesse et al. (2014a) 
derived a Bayesian model for predicting the annual 
regional distribution of the number of road traffic 
fatalities in Ghana. The study showed that population 
and number of registered vehicles are predominant 
factors affecting road traffic fatalities in Ghana. Similar 
conclusions were arrived at when a least square 
regression method (Hesse et al., 2014b) and multilevel 
random coefficient method (Hesse et al., 2014c) were 
used to derive models for predicting road traffic 
fatalities in Ghana.  
 

MATERIALS AND METHODS 
 

Let ni denote the number of road traffic casualties 
in the ith year in Ghana and let iy  denote the number of 

Road Traffic Fatalities (RTFs) in the thi  year in Ghana. 
We view iy  as a value of a random variable iY  that 

takes the values 0, 1, …, ni  If we assume the ni  
observations for each year are independent, and they all 
have the same probability ip  of dying as a result of 

RTAs, then Yi has the binomial distribution with 
parameters pi and in i.e. Yi - B(ni, pi )The probability 

mass function of iY  is given by: 

 

 ( ) (1 ) , 0, 1,...,i i iy n yi
i i i iii

nf y p p y ny
           (1) 

 
It can be shown that the expected value and 

variance of iY  are (Ofosu and Hesse, 2010): 

 
( )   and  var( ) (1 ).i i i i i i iE Y n p Y n p p                (2) 

 
The oddsi  is the ratio of the probability to its 

complement, or the ratio of favourable to unfavourable 
cases. Thus: 
  

1
odds .i

i

p
i p                                             (3) 

 
We take logarithms, calculating the logit or log-odds: 
 

 1
 logit( )   ln ,i

i

p
i i p

p                   (4) 

 
If the logit of the underlying probability pi is a 

linear function of the predictors, then we can write 
 

logit( )ip =  1
ln i

i

p
p

 = 0 1 1 ... ,i k ikx x       

= ,ix       0, 1, ...,i k                               (5) 

where, 
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ix   : The transpose of a vector of covariates  
   : A vector of regression coefficients 

 
Exponentiating Eq. (5) we find that the odds for the 

thi  unit are given by: 
 

 1
exp .i

i

p
ip

x                   (6) 

 
Solving for the probability ip  in the logit model gives: 

 
 
 

exp

1 exp
.i

i

x
i x

p


 
                                            (7) 

 
Maximum likelihood estimation: The p.d.f. of iY  is: 
 

 ( ) (1 ) , 0, 1,...,i i iy n yi
i i i iii

nf y p p y ny
    

 
The likelihood function is given by: 
  

( )l   =  
0

(1 )i i i
k y n yi

iiii

n p py



   

  1
1

(1 )
ii i

i

yk p n
ip

i
p

  

   1

10 0
1

i
i

i i i i i
xi

n nk kx y x y x

ei i
e e e

  

 

 
   

 
         (8) 

 
The maximum likelihood estimates of 

0 1,  ,..., k    are the values of 0 1,  ,..., k    which 
maximize the likelihood function. They are also the 
values of 0 1,  ,..., k    which maximize: 

  

 
0 0

( ) ln ( ) ln 1 i
k k x

i i i
i i

L l x y n e 

 
                     (9) 

 
The first derivative of x i   

with respect to j  is 

,ijx  thus: 

 

j

L


=
10 0

xi
xi

k k
e

i ij i ij
ei i

y x n x


 

 
    

 
 = 

0 0

k k
i ij i i ij

i i
y x n p x

 
    

= 
0 0

k k
i ij i ij

i i
y x x

 
     =  

0

k
i i ij

i
y x


 

                  
(10)

 
 
where, ( ) ,i i i iE Y n p    ip  depends on the 

covariates ix  and   is a vector of ( 1)k   parameters. 
Setting each partial derivative in (10) to zero, and 
replacing 0 1, , ..., k    by 0 1

ˆ ˆ ˆ, , ..., k    we obtain the 

maximum likelihood estimates of 0 1, , ..., .k    The 
methods of solution are iterative in nature and have 
been programmed into logistic regression software. The 

interested reader may consult the text by McCullagh 
and Nelder (1989) for a general discussion of the 
methods used by most programs. The second 
derivatives used in computing the standard errors of the 

parameter estimates, ˆ,  are: 
 

 2

10 0
1 .

xij

xijj l l

k k
L e

i ij i i i ij il
ei i

n x n p p x x
 

 
 
    

 
         

 
 
The comparison of observed to predicted values 

using the likelihood function is based on the following 
expression: 

 

D  = (likelihood of the fitted model)
(likelihood of the saturated model)

2 ln     
  

  = 2 ln(likelihood of the saturated model)  

ln(likelihood of the fitted model)                   (11) 

 
The log-likelihood of the fitted model can be written as: 
  

0

ˆ ˆ ˆ( )  ln ( ) ln(1 )
k

i i i i i
i

L y p n y p


          

=      ˆ ˆ

0
ln ( ) ln .i i i

i i

k y n y
i i in n

i
y n y





     
            (12) 

 
For the saturated model, we replace ˆiy  in Equation 

(12) by .iy  Equation (11) then becomes: 

 

    ˆ ˆ
0

2 ln ( ) ln ,i i i

i i i

k y n y
i i iy n y

i
D y n y




            (13) 

 
where, 

iy  : The observed  

ˆiy  : The fitted value for the thi  observation  

 
In particular, to assess the significance of an 

independent variable, we compare the value of D with 
and without the independent variable in the equation. 
The change in D due to the inclusion of the independent 
variable in the model is: 
 

G = D (model without the variable) 
-D (model with the variable)  
=  

(likelihood of the model without variable)
(likelihood of the fitted model)

2ln .      
 
It can be shown that, when the variable is not in the 

model, the maximum likelihood estimate of 0  is 

 1 0ln ,m m  where 1 0
0 0

 and ( ).
k k

i i i
i i

m y m n y
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Thus: 
 

G = 

 

01 01

0

ln

ˆ ˆln ( ) ln 1

2
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n n

k
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i
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=  

 
0

ˆ ˆ2 ln ( ) ln 1
k

i i i i i
i

y p n y p



      


1 1 0 0ln ln ln ,m m m m n n


    


                                                        (14) 

 
where, 1 0 .n m m   If the hypothesis that 0,  1,  2,  ...,j i k    is true, then G has the chi-square distribution with k 

degrees of freedom (Hosmer et al., 2013).  
 

RESULTS AND DISCUSSION 
 

In this section, we illustrate the use of statistical packages in R to fit logistic regression models as a special case 
of a generalized linear model with family binomial and link logit. We first begin the analysis using nlme package in 
R. First, the data set, on road traffic casualties from 1991 to 2001 in Ghana, is loaded for analysis as shown in listing 
(1).  
 
Listing (1): 
> rtf<-data.frame(matrix(c(1,920,8773,2,914,9116,3,901,7677,4,824,7664,5, 
1026,9106,6,1049,9903,7,1015,10433,8,1419,11786,9,1237,10202,10,1437,12310,11,1660,13178),11,3,byrow=TR
UE)) 
> names(rtf)<-c("year","Fatality","Injury") 
>  rtf$Casualty<-rtf$Fatality+rtf$Injury 
>  rtf$year<-factor(rtf$year,labels=c("1991","1992","1993","1994","1995", 

"1996","1997","1998","1999","2000","2001")) 
> rtf$Y<-cbind(rtf$Fatality,rtf$Injury) 
>  rtf 
year Fatality Injury Casualty Y.1 Y.2 
1 1991 920 8773 9693 920 8773 
2 1992 914 9116 10030 914 9116 
3 1993 901 7677 8578 901 7677 
4 1994 824 7664 8488 824 7664 
5 1995 1026 9106 10132 1026 9106 
6 1996 1049 9903 10952 1049 9903 
7 1997 1015 10433 11448 1015 10433 
8 1998 1419 11786 13205 1419 11786 
9 1999 1237 10202 11439 1237 10202 
10 2000 1437 12310 13747 1437 12310 
11 2001 1660 13178 14838 1660 13178 
 

Listing (2) shows the fit of the logistic regression model to the data using the glm() function in R.  
 
Listing (2):  
> logistic<-glm(Y~year,family = binomial, data = rtf) 

 
The results of the application of the R function ‘summary (logistic)’, which presents the parameter estimate and 

standard errors for the model, are simplified in Table 2.  

The fitted logistic equation, for the thi  year, is therefore given by: 
 

 ˆ
ˆ1

ln i

i

p
p = 1 2 102.25506 0.04490 0.11258 ... 0.18333 ,i i ix x x                                                                                     (15) 
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where 1,     if  
0,    ohterwise,ij

i j
x

 


 which gives the odds for the thi  year as: 

 

 ˆ
1 2 10ˆ1

exp 2.25506 0.04490 0.11258 ... 0.18333 .i

i

p
i i ip

x x x       

 
Thus,  
 

 
 

1 2 10

1 2 10

exp 2.25506 0.04490 0.11258 ... 0.18333

1 exp 2.25506 0.04490 0.11258 ... 0.18333
ˆ .i i i

i i i

x x x
i x x x

p
   

    
                           (16) 

 

For instance, when 0,i   
 
 

exp 2.25506
0 1 exp 2.25506

ˆ 0.09491,p


 
   which gives the estimate of the proportion of road 

traffic casualties who died in the year 1991. Note that, in computing for the value of 0ˆ ,p  1 2 10... 0.i i ix x x     

Note further that, in computing for ˆ ,  0,ip i   the predictor ,ijx  takes the value one (1) for i = j while the remaining 

9 predictors assume the value zero (0). Thus, from Table 2, when 5,i  : 
 

5p̂  =
 

 
exp 2.25506 0.04490(0) ... 0.01006(1) ... 0.18333(0)

1 exp 2.25506 0.04490(0) ... 0.01006(1) ... 0.18333(0)

     
      

=  
 

exp 2.25506 0.01006

1 exp 2.25506 0.01006
0.09578.

 
  

  

 
The remaining values of ˆip  are given in Table 2. The method for specifying the design variables involves 

setting all of them equal to 0 for the reference year (1991), and then setting a single design variable equal to 1 for 
each of the other groups. 

The significance of the logistic regression relationship can be assessed by using the null deviance to test the 
hypotheses: 
  

0: 0,     1,  2,  ...,  10jH j     against 

1: not all the 0iH     

 
at 0.05 level of significance. The test statistic is: 
  

 
 

10

0
ˆ ˆ2 ln ( ) ln 1

        12402 ln(12402) 110148 ln(110148) 12284 ln(122550) .

i i i i i
i

G y p n y p



      


     

 

 
When 0H  is true, G has the chi-square distribution with 10 degrees of freedom (Hosmer et al., 2013). We 

reject 0H  at significance level 0.05 if the computed value of G  is greater than 2
0.05,10 18.31.   From the R function 

‘summary(logistic)’, the value of the test statistic is 0 74.182.G   Since 74.182, the calculated value of ,G  is greater 

than 18.31, the test is significant at the 5% level. We therefore reject the null hypothesis in this case and conclude 
that at least one of the 10 coefficients is different from zero. 

Since the analysis indicates that the null hypothesis should be rejected at the 5% level, it means that some of the 
coefficients are significantly different from zero. But as to which of the coefficients are significantly different from 
zero, the analysis does not specify. Before concluding that any or all of the coefficients are nonzero, we may look at 
the univariable Wald test statistics (Hosmer et al., 2013):  

 

( )
.j

j
j se

W

                                                                                                                                            (17) 

 

These are shown in the seventh row of Table 2, labeled z. Under the hypothesis that the thi  coefficient is zero, 

iW  has the standard normal distribution. The eighth row of Table 2 shows the p-values which are computed under 

this hypothesis. The coefficients for the years 1993, 1998, 1999, 2000 and 2001 are different from zero, at 0.05 level 
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Table 2: Parameter estimates for logistic model of road traffic fatalities in Ghana from 1991 to 2001  
j   0  1 2 3 4 5 6 7 8 9 10 
Years  1991 

 Intercept 
 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

Estimates β -2.25506 -0.04490 0.11258 0.02494 0.07179 0.01006 -0.07502 0.13810 0.14517 0.10721 0.18333 
Standard 
errors 

 0.03465  0.04904 0.04941 0.05045 0.04781 0.04749  0.04777 0.04462 0.04591 0.04448 0.04335 

Oddsi  0.10487  0.10026 0.11736 0.10752 0.11267 0.10593  0.09729 0.12040 0.12125 0.11673 0.12597 
   0.09491  0.09113 0.10504 0.09708 0.10126 0.09578  0.08866 0.10746 0.10814 0.10453 0.11188̂
z -65.07200 -0.91600 2.27900 0.49400 1.50200 0.21200 -1.57100 3.09500 3.16200 2.41000 4.22900 
p-value  2  10-16  0.35992 0.02269 0.62102 0.13315 0.83223  0.11629 0.00197 0.00157 0.01593 2.3510-5 
 
Table 3:  Design variables for year 2004 
Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 
Variables for 2004  x31 = 0 x32 = 0 x33 = 2 x34 = 0 x35 = 0 x36 = 0 x37 = 0 x32 = 0 x39 = 0 x3,10 = 0 
β j -0.04490 0.11258 0.02494 0.07179 0.01006 -0.07502 0.13810 0.14517 0.10721 0.18333

 
Table 4:  Comparison of actual fatalities and fatalities estimated from Equation (16) 
j 1 2 3 4 5 6 7 8 9 10 
Year  2002 2003 2004 2005 2006  2007  2008  2009 2010 2011 
መߚ j -0.04490 0.11258 0.02494 0.07179 0.01006 -0.07502  0.13810  0.14517 0.10721 0.18333 
D  1665 1716 2186 1776 1856  2043  1938  2237 1986 2199 
   1318.9 1879.1 1831.3 1707.3 1580.1  1359.0  2000.0  2274.2 1944.0 2131.6ܦ
Error  346.1 -163.1 354.7 68.7 275.9  684.0 -62.0 -37.2 42.0 67.4 
Error %  20.8 9.5 16.2 3.9 14.9  33.5  3.2  1.7 2.1 3.1 

 
of significance, while those of the remaining years 
(1992, 1994, 1995, 1996 and 1998) are not significantly 
different from zero.  

According to Hosmer et al. (2013), the decision to 
include variables in a model cannot be base entirely on 
tests of statistical significance. The choice of variables 
in the model may be influenced by other considerations. 
It is possible for the coefficient of some variables to be 
zero at certain level of significance, but when taken 
collectively, considerable  confounding  can  be present 
in the data (Rothman et al., 2008; Maldonado and 
Greenland, 1993; Greenland, 1989; Miettinen, 1976). 

The purpose of analysing these data is not the 
determination of the parameters. Interest is centered on 
how good the model is in estimating future road traffic 
fatality values using these estimates. At this stage, we 
wish to use the model in Eq. (15) to estimate the 
number of road traffic fatalities from the years 2002 to 
2011, a period of ten years. To do this, a single design 
variable ,ijx  for year i, is set equal to 2 when i = j and 

then all remaining variables are set equal to 0, where i 
represents any of the years from 2002 to 2011. We use 

1 2 10, , ...,i i ix x x  in Eq. (15) as our design variables for 

the years 2002, 2003, and 2011, respectively. For 
instance, in year 3 (i.e., the year 2004), the design 
variables together with the corresponding parameter 
estimates are given in Table 3. 

Thus, a point estimate of the proportion of road 
traffic casualties who died in 2004 is given by Eq. (16): 
 

 
 

exp 2.25506 0.02494(2)
2004 1 exp 2.25506 0.02494(2)

ˆ 0.09929.p
 

  
   

 
From Table 1, the total number of road traffic 

casualties in 2004 is 18 445. Thus a point estimate of 

the total number of road traffic fatalities in 2004 is (to 
the nearest whole number): 

  

2004
ˆ 18 445 0.099 29 1831.D     

 
The actual road traffic fatalities D together with the 

values of D̂  calculated from Eq. (16) are given in 
Table 4. The percentage differences between the 
calculated and actual values are also given in Table 4. 

It can be seen that all the calculated figures, ˆ ,D  

corresponding to the coefficients, ,j  that were 

significantly different from 0, are within 10% of the 
actual figure and only one (i.e., 0.07179) of the five 
coefficients, that were not significantly different from 
0, estimated D within 10% (i.e., 3.9%) of its actual 
value. 

 
CONCLUSION 

 
Logistic regression analysis of road traffic fatalities 

in Ghana has been performed using road traffic accident 
data from the National Road Safety Commission. The 
data span from 1991 to 2001. The formula for 
predicting the proportion of road traffic casualties who 
die in the ith year using a logistic regression approach is: 

  

 ˆ
ˆ1

ln i

i

p
p

= 0 1 1 10 10
ˆ ˆ ˆ... , 0, 2, ..., 10,i ix x i        

where, the values of the parameters 0 1 10
ˆ ˆ ˆ, , ...,  

 
are 

given in Table 2. Using the model to estimate the 
number of road traffic fatalities from 2002 to 2011 in 
Ghana, it was noted that of the 10 calculated figures, 6 
are within 10% of the actual figure.  
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