Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Design and Implementation of Adaptive Model Based Gain Scheduled Controller for a Real Time Non Linear System in LabVIEW

1M. Kalyan Chakravarthi and 2Nithya Venkatesan
1School of Electronics Engineering
2School of Electrical Engineering, VIT University, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India
Research Journal of Applied Sciences, Engineering and Technology  2015  2:188-196
http://dx.doi.org/10.19026/rjaset.10.2571  |  © The Author(s) 2015
Received: October ‎22, ‎2014  |  Accepted: December ‎27, ‎2014  |  Published: May 20, 2015

Abstract

The aim of this study is to design and implement an Adaptive Model Based Gain Scheduled (AMBGS) Controller using classical controller tuning techniques for a Single Spherical Nonlinear Tank System (SSTLLS). A varying range of development in the control mechanisms have been evidently seen in the last two decades. The control of level has always been a topic of discussion in the process control scenario. In this study a real time SSTLLS has been chosen for investigation. System identification of these different regions of nonlinear process is done using black box model, which is identified to be nonlinear and approximated to be a First Order plus Dead Time (FOPDT) model. A proportional and integral controller is designed using LabVIEW and Skogestad’s and Ziegler Nichols (ZN) tuning methods are implemented. The paper will provide details about the data acquisition unit, shows the implementation of the controller and compare the results of PI tuning methods used for an AMBGS Controller.

Keywords:

Graphical User Interface (GUI), LabVIEW, PI controller, skogestad, Single Spherical Tank Liquid Level System (SSTLLS) , Z-N method,


References

  1. Astrom, K.J. and T. Hagglund, 1984. Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 20(5): 645-651.
    CrossRef    
  2. Astrom, K.J. and T. Hagglund, 1996. Automatic Tuning of PID Controllers. The Control Handbook, CRC Press, Florida, pp: 817-826.
  3. Biegler, L.T. and J.B. Rawlings, 1991. Optimization approaches to nonlinear model predictive control. Proceeding of Conference on Chemical Process Control-CPCIV. Austin, TX, pp: 543-571.
  4. Cheng, G.S. and J.C. Hung, 1985. A least-squares based self tuning of PID controller. Proceeding of IEEE South East Conference. North Carolina, pp: 325-332.
  5. Cohen, G.H. and G.A. Coon, 1953. Theoritical consideration of retarted control. T. ASME, 75: 827-834.
  6. Depaor, A.M. and M. O’Malley, 1989. Controllers of ziegler nicolastype for unstable processes. Int. J. Control, 49: 1273-1284.
    CrossRef    
  7. DineshKumar, D. and B. Meenakshipriya, 2012. Design and implementation of non linear system using gain scheduled PI controller. Proc. Eng., 38: 3105-3112.
    CrossRef    
  8. Garcia, C.E. and M. Morari, 2000. Internal model control. 1.A unifying review and some new results. 1 and EC Process Des. Dev., 21(2): 308-323.
  9. Hang, C.C., K.J. Astrom and W.K. Ho, 1991. Refinements of the Ziegler-Nichols tuning formula. IEE Proc-D, 138: 111-118.
    CrossRef    
  10. Kalyan Chakravarthi, M. and N. Venkatesan, 2014. LabVIEW based tuning of PI controllers for a real time non linear process. J. Theor. Appl. Inform. Technol., 68(3): 579-585.
  11. Kalyan Chakravarthi, M., P.K. Vinay and N. Venkatesan, 2014. Real time implementation of gain scheduled controller design for higher order nonlinear system using LabVIEW. Int. J. Eng. Technol., 6(5): 2031-2038.
  12. Kravaris, C. and Y. Arkun, 1991. Geometric nonlinear control-an overview. Int. J. Chem. Process Control, CPCIV, Austin, TX, pp: 477-515.
  13. Krishna, K.H., J.S. Kumar and M. Shaik, 2012. Design and development of model based controller for a spherical tank. Int. J. Current Eng. Technol., 2(4): 374-376.
  14. Mann, G.K.I., B.G. Hu and R.G. Gosine, 1999. Analysis of direct action fuzzy PID controller structures. IEEE T. Syst. Man Cy. B, 29(3): 371-388.
    CrossRef    PMid:18252311    
  15. Nandola, N.N. and S. Bharatiya, 2008. A multiple model approach for predictive control of nonlinear hybrid systems. J. Process Contr., 18: 131-148.
    CrossRef    
  16. Nithya, S., N. Sivakumaran, T. Balasubramanian and N. Anantharaman, 2008. Model based controller design for a spherical tank process in real time. IJSSST, 9(4).
  17. Prabhu, E.S. and M. Chidambaram, 1991. Robust control of a distillation column by method of inequalities. Indian Chem. Eng., 37: 181-187.
  18. Raich, A., X. Wu and A. Cinar, 1991. Approximate dynamic models for chemical processes: A comparative study of neural networks and nonlinear time series modeling techniques. Proceeding of AIChE Conference. Los Angeles, CA.
    PMCid:PMC1908237    
  19. Rivera, D.E., M. Morari and S. Skogested, 1986. Internal Model Control for PID controller Design. I.&E.C. Process Des. Dev., 25(1): 22-265.
  20. Soni, D., M. Gagrani, A. Rathore and M.K. Chakravarthi, 2014. Study of different controller’s performance for a real time non-linear system. Int. J. Adv. Electron. Electr. Eng., 3(3): 10-14.
  21. Sundaravadivu, K. and K. Saravanan, 2012. Design of fractional order PID Controller for liquid level control of spherical tank. Eur. J. Sci. Res., 84(3): 345-353.
  22. Sundaresan, K.R. and R.R. Krishnaswamy, 1978. Estimation of time delay, time constant parameters in time, frequency and laplace domains. Can. J. Chem. Eng., 56: 257.
    CrossRef    
  23. Sung, S.W., O.J. Lee, I.B. Lee, J. Lee and I.B. Yi, 1996. Automatic tuning of PID controller using second order plus dead time delay model. J. Chem. Eng. Jpn., 29(6): 991-999.
    CrossRef    
  24. Zhuang, M. and D.P. Atherton, 1993. Automatic tuning of optimum PID controllers. IEE Proc-D, 140(3): 216-224.
    CrossRef    
  25. Ziegler, J.G. and N.B. Nicolas, 1942. Optimum settings for automatic controllers. T. ASME, 64: 759-768.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved