Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Advance Journal of Food Science and Technology


Height-diameter Models of Chinese Fir (Cunninghamia lanceolata) Based on Nonlinear Mixed Effects Models in Southeast China

Hao Xu, Yujun Sun, Xinjie Wang and Ying Li
Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
Advance Journal of Food Science and Technology  2014  4:445-452
http://dx.doi.org/10.19026/ajfst.6.53  |  © The Author(s) 2014
Received: November 04, 2013  |  Accepted: November 13, 2013  |  Published: April 10, 2014

Abstract

Tree height and diameter at breast height are two important forest factors. The best model from 23 height-diameter equations was selected as the basic model to fit the height-diameter relationships of Chinese fir with one level (sites or plots effects) and nested two levels (nested effects of sites and plots) Nonlinear Mixed Effects (NLME) models. The best model was chosen by smaller Bias, RMSE and larger R2adj. Then the best random-effects combinations for the NLME models were determined by AIC, BIC and -2LL. The results showed that the basic model with three random effects parameters φ1, φ2 and φ3 was considered the best mixed model. The nested two levels NLME model considering heteroscedasticity structure (power function) possessed with higher predictable accuracy and significantly improved model performance (LRT = 469.43, p<0.0001). The NLME model would be allowed for estimating accuracy the height-diameter relationships of Chinese fir and provided better height predictions than the models using only fixed-effects parameters.

Keywords:

Cunninghamia lanceolata, height-diameter models, heteroscedasticity, nonlinear mixed effects models,


References

  1. Adame, P., M. Del Rio and I. Canellas, 2008a. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). Forest. Ecol. Manag., 256(1-2): 88-98.
    CrossRef    
  2. Adame, P., J. Hynynen, I. Canellas and M. Del Rio, 2008b. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. Forest. Ecol. Manag., 255(3-4): 1011-1022.
    CrossRef    
  3. Akaike, H., 1974. A new look at the statistical model identification. IEEE T. Automat. Contr., 19(6): 716-723.
    CrossRef    
  4. Biging, G.S., 1985. Improved estimates of site index curves using a varying-parameter mode. Forest. Sci., 31(1): 248-259.
  5. Calama, R. and G. Montero, 2004. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Can. J. Forest. Res., 34(1): 150-163.
    CrossRef    
  6. Calama, R. and G. Montero, 2005. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): A calibrating approach. Silva Fenn., 39(1): 37-54.
    CrossRef    
  7. Colbert, K.C., D.R. Larsen and J.R. Lootens, 2002. Height-diameter equations for thirteen Midwestern bottomland hardwood species. North. J. Appl. For., 19(4): 171-176.
  8. Crecente-Campo, F., P. Soares, M. Tome and U. Dieguez-Aranda, 2010a. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. Forest. Ecol. Manag., 260(11): 1965-1974.
    CrossRef    
  9. Crecente-Campo, F., M. Tome, P. Soares and U. Dieguez-Aranda, 2010b. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain. Forest. Ecol. Manag., 259(5): 943-952.
    CrossRef    
  10. Curtis, R.O., 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest. Sci., 13(4): 365-375.
  11. Davidian, M. and D.M. Giltinan, 1995. Nonlinear Models for Repeated Measurement Data. Chapman and Hall, New York.
  12. Fang, Z. and R.L. Bailey, 1998. Height-diameter models for tropical forests on Hainan Island in southern China. Forest. Ecol. Manag., 110(1-3): 315-327.
    CrossRef    
  13. Fang, Z. and R.L. Bailey, 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest. Sci., 47(3): 287-300.
  14. Fitzmaurice, G.M., N.M. Laird and J.H. Ware, 2004. Applied Longitudinal Analysis. John Wiley and Sons Inc., Publication, New Jersey.
  15. Fox, J.C., P.K. Ades and H. Bi, 2001. Stochastic structure and individual-tree growth models. Forest. Ecol. Manag., 154(1): 261-276.
    CrossRef    
  16. Fu, L., H. Sun, R.P. Sharma, Y. Lei, H. Zhang and S. Tang, 2013. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. Forest. Ecol. Manag., 302: 210-220.
    CrossRef    
  17. Gutzwiller, K.J. and S.K. Riffell, 2007. Using Statistical Models to Study Temporal Dynamics of Animal-Landscape Relations. In: Bissonette, J. and I. Storch (Eds.), Temporal Dimensions of Landscape Ecology: Wildlife Responses to Variable Resources. Spinger-Verlag, New York.
    CrossRef    
  18. Huang, S., D. Price and J.S. Titus, 2000. Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest. Ecol. Manag., 129(1): 125-141.
    CrossRef    
  19. Huang, S., S.J. Titus and D.P. Wiens, 1992. Comparison of nonlinear height-diameter functions for major Alberta tree species. Can. J. Forest Res., 22(9): 1297-1304.
    CrossRef    
  20. Ihaka, R. and R. Gentleman, 2004. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  21. Keselman, H.J., J. Algina, R.K. Kowalchuk and R.D. Wolfinger, 1999. A comparison of recent approaches to the analysis of repeated measurements. Brit. J. Math. Stat. Psychol., 52: 63-78.
    CrossRef    
  22. Lindstrom, M.J. and D.M. Bates, 1990. Nonlinear mixed effects models for repeated measures data. Biometrics, 46: 673-687.
    CrossRef    PMid:2242409    
  23. Meng, S.X. and S. Huang, 2009. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function. Forest. Sci., 55(3): 238-248.
  24. Nigh, G., 2012. Calculating Empirical Best Linear Unbiased Predictors (EBLUPs) for nonlinear mixed effects models in Excel/Solver. Forest. Chron., 88(3): 340-344.
    CrossRef    
  25. Pinheiro, J.C. and D.M. Bates, 2000. Mixed Effects Models in S and S-Plus. Spring-Verlag, New York.
  26. Pinheiro, J., D. Bates, S. DebRoy and D. Sarkar, 2005. NLME: Linear and Nonlinear Mixed Effects Models. R Foundation for Statistical Computing, Vienna, Austria.
  27. Schabenberger, O. and T.G. Gregoire, 1995. A conspectus on estimating function theory and its application to recurrent modelling issues in forest biometry. Silva Fenn., 29(1): 49-70.
    CrossRef    
  28. Sharma, M. and J. Parton, 2007. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest. Ecol. Manag., 249(3): 187-198.
    CrossRef    
  29. Vonesh, E. and V.M. Chinchilli, 1997. Linear and Nonlinear Models for the Analysis of Repeated Measurements. Marcel Dekker, New York.
  30. Weiss, R.E., 2005. Modeling Longitudinal Data. Springer, New York.
  31. West, P.W., D.A. Ratkowsky and A.W. Davis, 1984. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. Forest. Ecol. Manag., 7(3): 207-224.
    CrossRef    
  32. Zhang, J., A. Duan, H. Sun and L. Fu, 2011. Self-thinning and Growth Modelling for Even-aged Chinese Fir (Cunninghamia lanceolata (lamb.) Hook.) Stands. Science Press, Beijing.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2042-4876
ISSN (Print):   2042-4868
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved