Research Article | OPEN ACCESS
Bayesian Estimation of a Mixture Model
Ilhem Merah and Assia Chadli
Probability and Statistics Laboratory, Badji Mokhtar University, BP12, Annaba 23000, Algeria
Research Journal of Applied Sciences, Engineering and Technology 2015 1:22-28
Received: November ‎10, ‎2014 | Accepted: February ‎8, ‎2015 | Published: May 10, 2015
Abstract
We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010). This one is a mixture of a Gamma distribution G(2, (1/θ)) and a new distribution L(θ). We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980) and Tierney and Kadane (1986). Using a statistical sample of 60 failure data relative to a technical device, we illustrate the results derived. Based on a simulation study, comparisons are made between these two methods and the maximum likelihood method of this two parameters model.
Keywords:
Approximations, bayes estimator, mixture distribution, reliability, weibull distribution,
References
-
Dempster, A.P., N.M. Laird and D. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B Met., 39(1): 1-38.
-
Elmahdy, E.E. and A.W. Aboutahoun, 2013. A new approach for parameter estimation of finite Weibull mixture distributions for reliability modelling. Appl. Math. Model., 37: 1800-1810.
CrossRef
-
Gelman, A., J.B. Carlin, H.S. Stern and D.B. Rubin, 2003. Bayesian Data Analysis. 2nd Edn., Chapman and Hall, New York.
-
Idée, E., 2006. Loi de probabilité obtenue par perturbation aléatoire simple de l'un des paramètres de la loi de référence. Prépublication du LAMA-Université de Savoie, N° 07-06a.
-
Idée, E. and L. Pierrat, 2010. Genèse et estimation d'un modèle de fiabilité en Baignoire à Taux de Défaillance Borné. 42ème Journées de Statistique, Marseille, France.
-
Jiang, R. and D.N.P. Murthy, 1995. Modeling failure-data by mixture of 2 Weibull distributions: A graphical approach. IEEE T. Reliab., 44(3): 477-488.
CrossRef
-
Jiang, S.Y. and D. Kececioglu, 1992. Maximum likelihood estimates from censored data for mixed-Weibull distribution. IEEE T. Reliab., 41: 248-255.
CrossRef
-
Lawless, J.F., 2002. Statistical Models and Methods for Lifetime Data. 2nd Edn., A John Wiley and Sons, New York.
CrossRef
-
Lawless, J.F., 2003. Statistical Models and Methods for Lifetime Data. Wiley Series in Probability and Statistics, John Wiley and Sons, Hoboken, NJ.
-
Levine, R.A. and G. Casella, 2001. Implementation of the Monte-Carlo EM algorithm. J. Comput. Graph. Stat., 10: 422-439.
CrossRef
-
Lindley, D.V., 1980. Approximate Bayesian methods. Trabajos Estadist. Invest. Oper., 31: 232-245.
CrossRef
-
Tierney, L. and J.B. Kadane, 1986. Accurate approximations for posterior moments and marginal densities. J. Am. Stat. Assoc., 81: 82-86.
CrossRef
-
Tsionas, E.G., 2002. Bayesian analysis of finite mixtures of Weibull distributions. Commun. Stat. A-Theor., 31(1): 37-48.
-
Wei, G.C.G. and M.A. Tanner, 1990. A monte carlo implementation of the EM Al-gorithm and the poor man’s data augmentation algorithms. J. Am. Stat. Assoc., 85: 699-704.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|