Research Article | OPEN ACCESS
Optimal Classifier Ensemble Design Based on Cooperative Game Theory
Jafar A. Alzubi
Al-Balqa Applied University, Jordan
Research Journal of Applied Sciences, Engineering and Technology 2015 12:1336-1343
Received: May 30, 2015 | Accepted: August 5, 2015 | Published: December 25, 2015
Abstract
Classifier ensemble techniques have been an active area of machine learning research in recent years. The aim of combining classifier ensembles is to improve the accuracy of the ensemble compared to any individual classifier. An ensemble can overcome the weakness of an individual classifier if its base classifiers do not make simultaneous errors. In this study, a novel algorithm for optimal classifier ensemble design called Coalition-based Ensemble Design (CED) is proposed and studied in detail. The CED algorithm aims to reduce the size and the generalization error of a classifier ensemble while improving accuracy. The underlying theory is based on the formation of coalitions in cooperative game theory. The algorithm estimates the diversity of an ensemble using the Kappa Cohen measure for multi base classifiers and selects a coalition based on their contributions to overall diversity. The CED algorithm is compared empirically with several classical design methods, namely Classic ensemble, Clustering, Thinning and Most Diverse algorithms. Experimental results show that the CED algorithm is superior in creating the most diverse and accurate classifier ensembles.
Keywords:
Classification, classifiers diversity, classifier ensemble, cooperative game theory, internet security, kappa cohen measure, machine learning,
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|