Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


An Efficient Method for Automatic Human Recognition Based on Retinal Vascular Analysis

Saba A. Tuama and Dr. Loay E. George
Department of Computer Science, College of Science, Baghdad University, Baghdad, Iraq
Research Journal of Applied Sciences, Engineering and Technology  2016  1:122-128
http://dx.doi.org/10.19026/rjaset.12.2311  |  © The Author(s) 2016
Received: September ‎12, ‎2015  |  Accepted: September ‎29, ‎2015  |  Published: January 05, 2016

Abstract

Biometric security has become more important because of the Increasing activities of hackers and terrorists. Retinal biometric system is one of the most reliable and stable biometrics for the identification/verification of individuals in high security area rather than other biometric. Also no two people have the same retinal pattern and then cannot be stolen or forget. Due to these reasons this study presents a system for individual recognition based on vascular retina pattern. This approach is robust to brightness variations, noise and it is insensitive to rotation. The proposed method consists of three main stages (i.e., preprocessing, feature extraction and finally matching stage). Preprocessing is done to make the required color band separation, remove the rotation appearance which might occur during the scanning process and modify the image brightness to simplify the process of extracting vascular pattern (region of interesting) from input retina (i.e., feature vector) in the feature extraction stage. Finally, the discrimination process of features is evaluated and the results utilized in matching stage. The proposed method is tested on the two publicly available datasets: (i) DRIVE (Digital Retinal Images for Vessel Extraction) and (ii) STARE (Structured Analysis of the Retina). The achieved accuracy of recognition rate was equal to 100% for all datasets.

Keywords:

Biometric security, human recognition, retina biometric, rotation invariance, vascular analysis, vascular patterm,


References

  1. Aich, S. and G.M. Al-Mamun, 2013. An efficient supervised approach for retinal person identification using Zernike moments. Int. J. Comput. Appl., 81(7): 34-37.
    CrossRef    
  2. Al-Hamdani, O., A. Chekima, J. Dargham, S.H. Salleh, F. Noman et al., 2013. Multimodal biometrics based on identification and verification system. J. Biometrics Biostat., 4(2): 1-8.
  3. Barkhoda, W., F.A. Tab and M.D. Amiri, 2009. Rotation invariant retina identification based on the sketch of vessels using angular partitioning. Proceeding of the International Multi Conference on Computer Science and Information Technology (IMCSIT'09), Poland, pp: 3-6.
    CrossRef    
  4. Bevilacqua, V., L. Cariello, D. Columbo, D. Daleno, M.D. Fabiano, M. Giannini, G. Mastronardi and M. Castellano, 2008. Retinal fundus biometric analysis for personal identifications. In: Huang, D.S. et al. (Eds.), ICIC, 2008. LNAI 5227, Springer-Verlag, Berlin, Heidelberg, pp: 1229-1237.
    CrossRef    
  5. Cemal, K. and C. Iki, 2011. A personal identification system using retinal vascular in retinal fundus images. Expert Syst. Appl., 38(11): 13670-13681.
    CrossRef    
  6. Dehghani, A., Z. Ghassabi, H.A. Moghddam and M.S. Moin, 2013. Human recognition based on retinal images and using new similarity function. EURASIP J. Image Video Process., 58: 1-10.
    CrossRef    
  7. Dwivedi, S., S. Sharma, V. Mohan and K.A. Aziz, 2013. Fingerprint, retina and facial recognition based multimodal systems. Int. J. Eng. Comput. Sci., 2(5): 1487-1500.
  8. Farzin, H., H.A. Moghaddam and M. Shahrammoin, 2008. A novel retinal identification system. EURASIP J. Adv. Sig. Pr., 2008: 1-10.
    CrossRef    
  9. Godse, D.A. and D.S. Bormane, 2013. Automated localization of optic disc in retinal images. Int. J. Adv. Comput. Sci. Appl., 4(2): 65-71.
  10. Goh, K.G., W. Hsu and M.L. Lee, 2000. Medical Data Mining and Knowledge Discovery. Springer, Berlin, Germany, pp: 181-210.
  11. Hadi, J. and T. Hamid, 2014. Retinal identification system using Fourier-mellin transform and fuzzy clustering. Indian J. Sci. Technol., 7(9): 1289-1296.
  12. Hájek, J., M. Drahanský and R. Drozd, 2013. Extraction of retina features based on position of the blood vessel bifurcation. J. Med. Res. Dev., 2(3): 55-58.
  13. Hoover, A., V. Kouznetsova and M. Goldbaum, 2000. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE T. Med. Imaging, 19(3): 203-210.
    CrossRef    PMid:10875704    
  14. Ibrahim, A.A., 2014. Iris recognition using Haar wavelet transform. J. Al-Nahrain Univ., Sci., 17(1): 180-186.
  15. Jain, A.K., L. Hong and S. Pankanti, 2000. Biometric identification. Commun. ACM, 43(2): 91-98.
    CrossRef    
  16. Jain, A.K., A. Ross and S. Prabhakar, 2004. An introduction to biometric recognition. IEEE T. Circ. Syst. Vid., 14(1): 4-20.
  17. Mali, K. and S. Bhattacharya, 2013. Comparative study of different biometric features. Int. J. Adv. Res. Comput. Commun. Eng., 2(7): 2776-2784.
  18. Ortega, M., M.G. Penedo, J. Rouco, N. Barreira and M.J. Carreira, 2009. Retinal verification using a feature points-based biometric pattern. EURASIP J. Adv. Sig. Pr., 2009: 1-13.
    CrossRef    
  19. Park, U., H. Chen and A.K. Jain, 2005. 3D model-assisted face recognition in video. Proceeding of the 2nd Canadian Conference on Computer and Robot Vision (CRV’05), 3: 322-329.
    CrossRef    
  20. Plannerer, B., 2005. An Introduction to Speech Recognition. E-Books Directory, Retrieved from: http://sistemic.udea.edu.co/wp-content/uploads/2013/10/introSR.pdf.
    Direct Link
  21. Qamber, S., Z. Waheed and U. Akram, 2012. Person identification system based on vascular pattern of human retina. Proceeding of the Cairo International Biomedical Engineering Conference (CIBEC).
  22. Ross, A., A. Jain and J. Reisman, 2003. Hybrid fingerprint matcher. Pattern Recogn., 36(7): 1661-1673.
    CrossRef    
  23. Rubaiyat, A.H., S. Aich, T.T. Toma, A.R. Mallik, R. Al-Islam and A.H. Mohammad, 2014. Fast normalized cross-correlation based retinal recognition. Proceeding of the 17th International Conference Computer and Information Technology (ICCIT, 2014), pp: 358-361.
    CrossRef    
  24. Sabaghi, M., S.R. Hadianamrei, M. Fattahi, M.R. Kouchaki and A. Zahedi, 2012. Retinal identification system based on the combination of fourier and wavelet transform. J. Signal Inform. Process., 3(1): 35-38.
    CrossRef    
  25. Sasidharan, G., 2014. Retina based personal identification system using skeletonization and similarity transformation. ?Int. J. Comput. Trends Technol., 17(3): 144-147.
    CrossRef    
  26. Simon, C. and I. Goldstein, 1935. A new scientific method of identification. New York State J. Med., 35(18): 901-906.
  27. Spinella, E., 2003. Biometric Scanning Technology: Fingers, Facial and Retinal Scanning. SANS Institute, San Francisco, CA.
    PMCid:PMC1868202    
  28. Tabatabaee, H., A.M. Fard and H. Jafariani, 2006. A novel human identifier system using retina image and fuzzy clustering approach. Proceeding of the 2nd IEEE International Conference on Information and Communication Technologies (ICTTA, 2006). Damascus, pp: 1031-1036.
  29. Tower, P., 1955. The fundus oculi in monozygotic twins: Report of six pairs of identical twins. Arch. Ophthalmol., 54(2): 225-239.
    CrossRef    
  30. Tuama, S.A. and L.E. George, 2016. A hybrid morphological based segmentation method for extracting retina blood vessels grid. Brit. J. Appl. Sci. Technol., 12(2).
  31. Wayman, J., 2001. Using biometric identification technologies in the election process. Int. J. Image Graph., 1(1): 93-113.
    CrossRef    
  32. Xu, Z.W., X.X. Guo, X.Y. Hu and X. Cheng, 2005. The blood vessel recognition of ocular fundus. Proceeding of the 4th International Conference on Machine Learning and Cybernetics (ICMLC, 2005). Guangzhou, pp: 4493-4498.
  33. Zhang, T.Y. and C.Y. Suen, 1984. A fast parallel algorithm for thinning digital patterns. Commun. ACM, 27(3): 236-239.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved