Research Article | OPEN ACCESS
Thermal Inertia and Thermal Properties of the Composite Material Clay-plastic
1Soumia Mounir, 1Abdelhamid Khabbazi, 1Youssef Maaloufa, 2Asmae Khaldoun and 1Yassine Hamdouni
1LEME, University Mohamed V-Agdal, EST Sale, 227 Avenue Prince Héritier, Sale, Maroc
2Al Akhawayn University, Avenue Hassan II, BP 104, 53000 Ifrane, Maroc
Research Journal of Applied Sciences, Engineering and Technology 2016 5:507-515
Received: July ‎13, ‎2015 | Accepted: August ‎30, ‎2015 | Published: March 05, 2016
Abstract
Improving insulation building materials with low energy consumption becomes an obligation so as to reduce the heat energy of houses. For this purpose, a series of experimental studies were performed on composite clay-plastic. The first step in this study is the chemical characterization of clay using the fluorescence X method. The second step is thermal characterization of clay alone and the composites clay-plastic using the asymmetrical hot plate and Flash methods. The third step in the work is the verification of thermal conductivity using different theoretical models. The fourth step in this study is the study of thermal Inertia of walls done from the composite clay-plastic. Finally a study of delay of temperature, heat flow and damping factor for a wall done from those composites were conducted. The obtained results indicate that this composite presents interesting characteristics in term of insulation and thermal Inertia.
Keywords:
Clay-plastic, flash method, hot plate method, material insulation, thermal conductivity, thermal inertia,
References
-
Asdrubali, F., S. Schiavoni and K. Horoshenkov, 2012. A review of sustainable materials for acoustic applications. Build. Acoust., 19: 283-312, Doi: 10.1260/1351-010X.19.4.283.
CrossRef -
Bouchair, A., 2008. Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation. Build. Environ., 43: 1603-1618, Doi: 10.1016/j.buildenv.2007.10.005.
CrossRef -
Chahwane, L., 2011. Valorisation de l’inertie thermique pour la performance énergetique des bâtiments. Ph.D. Thesis, Université de Grenoble, French.
-
Degiovanni, A., J.C. Batsale and D. Maillet, 1996. Mesure de la diffusivité longitudinale de matériaux anisotropes. Rev. Gén. Therm., 35: 141-147, Doi: 10.1016/S0035-3159(96)80010-9.
CrossRef -
Degiovanni, A., M. Laurent and R. Prost, 1979. Mesure automatique de la diffusivité thermique. Rev. Phys. Appl., 14: 927-932, Doi: 10.1051/rphysap: 019790014011092700.
CrossRef -
Hamilton, R.L. and O.K. Crosser, 1969. Thermal conductivity of heterogeneous systems. Ind. Eng. Chem., 1(3): 187-191.
CrossRef -
Jannot, Y., V. Felix and A. Degiovanni, 2010. A centered hot plate method for measurement of thermal properties of thin insulating materials. Meas. Sci. Technol., 21: 035106, Doi: 10.1088/0957-0233/21/3/035106.
CrossRef -
Jannot, Y., 2011. Théorie et pratique de la Métrologie thermique. Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA).
PMCid:PMC3162725 -
Jannot, Y., R. Benjamin, D. Alain, 2010. Measurement of thermal conductivity and thermal resistance with a tiny hot plate. LEMTA, Nancy-Université, CNRS, 2, avenue de la Forêt de Haye, BP 160 - 54504 Vandoeuvre Cedex France, pp: 11-31.
-
Khabbazi, A., M. Garoum and O. Terahmina, 2005. Experimental study of thermal and mechanical properties of a new insulating material based on cork and cement mortar. AMSE J. Adv. Model. Simul., 74(7): 73.
-
Laetitia Vouyovitch Van Schoors, 2009. Vieillissement hydrolytique des geotextiles polyester (polyethylene terephtalate): Etat de l’art. Bulletin des Laboratoires des Ponts et Chauss´ees, pp: 133-154. Retrieved from: https://hal.archives-ouvertes.fr/hal-0035048 7/document.
Direct Link -
Lin, W., P.M. Fulton, R.N. Harris, O. Tadai, O. Matsubayashi et al., 2014. Thermal conductivities, thermal diffusivities and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST). Earth Planets Space, 66: 48, Doi: 10.1186/1880-5981-66-48.
CrossRef -
Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11: 431-441, Doi: 10.1137/0111030.
CrossRef -
Maxwell, J.C., 1954. A Treatise on Electricity and Magnetism. 3rd Edn., Dover Publications, New York.
-
Mounir, S., Y. Maaloufa, A.B. Cherki and A. Khabbazi, 2014. Thermal properties of the composite material clay/granular cork. Constr. Build. Mater., 70: 183-190, Doi: 10.1016/j.conbuildmat.2014.07.108.
CrossRef -
Parker, W.J., R.J. Jenkins, C.P. Butler and G.L. Abbott, 1961. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. J. Appl. Phys., 32: 1679-1684, Doi: 10.1063/1.1728417.
CrossRef -
Poulaert, B., 1987. Le matériau polymere: de l’isolant au conducteur thermique. Thesis, Université catholique de Louvain-Faculté des sciences appliquées laboratoire physico-chimique et de physique des matériaux-Laboratoire des hauts polymères.
-
Sutcu, M., J.J. del Coz Díaz, F.P. Álvarez Rabanal, O. Gencel and S. Akkurt, 2014. Thermal performance optimization of hollow clay bricks made up of paper waste. Energ. Buildings, 75: 96-108, Doi: 10.1016/j.enbuild.2014.02.006.
CrossRef -
Wienner, O., D. Lamellare and O. Wienner, 1912. Lamellare Doppelbrechung. Phys. Z., 5: 332-338.
-
Woodside, W. and J.H. Messmer, 1961. Thermal conductivity of porous media. II. Consolidated rocks. J. Appl. Phys., 32(9): 1699-1706.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|