Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Modeling and Simulation of Double Gate Field Plate In0.2Ga0.8As/Al0.3Ga0.7 as HEMT using Gaussian Process Regression for Sensor Application`

Yousfi Abderrahim, Dibi Zohir, Guermoui Mawloud and Aissi Salim
Department of Electronics, Advanced Electronic Laboratory (LEA), Batna-2-University, Avenue Mohamed El-Hadi Boukhlouf, 05000, Batna, Algeria
Research Journal of Applied Sciences, Engineering and Technology  2017  3:112-118
http://dx.doi.org/10.19026/rjaset.14.4153  |  © The Author(s) 2017
Received: November 21, 2016  |  Accepted: February 13, 2017  |  Published: March 15, 2017

Abstract

We propose a new approach for modeling a High Electron Mobility Transistor (HEMT) using that of Gaussian Process Regression one (GPR), to improve the current-voltage characteristics of HEMT transistor for using in electronic and biological domain or any other domain that needs it. The study and development of a new Atlas Silvaco device are taking into account the impact of several geometric and electric parameters; we focus on the electrical performances of the double gate field plate In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double hetero-structure; we compare the numerical simulation using 2D Atlas Silvaco simulator with the extracted experimental results. Then we validate our model by GPR approach. The GPR approach opens promising opportunities for devices modeling without knowing too much the device physics properties. The obtained results give better performances which lead to fabricate devices with better electrical properties for promoting further investigation.

Keywords:

2D Atlas Silvaco, double hetero structure, GPR, HEMT,


References

  1. Abdullah, W.F.H., M. Othman, M.A.M. Ali and M.S. Islam, 2010. Improving ion-sensitive field-effect transistor selectivity with backpropagation neural network. WSEAS T. Circuit. Syst., 9(11): 700-712.
    Direct Link
  2. ATLAS User's Manual, 2012. Device simulation software, 2012. Silvaco International, Santa Clara, CA.
  3. Benacer, I. and Z. Dibi, 2014. Modeling and simulation of organic field effect transistor (OFET) using artificial neural networks. Int. J. Adv. Sci. Technol., 66: 79-88.
    CrossRef    
  4. Bhatia, V., N. Pandey and A. Bhattacharyya, 2016. Modelling and design of inverter threshold quantization based current comparator using artificial neural networks. Int. J. Elect. Comput. Eng., 6(1): 320-329.
    CrossRef    
  5. Chan, L.L.T., Y. Liu and J. Chen, 2013. Nonlinear system identification with selective recursive Gaussian process models. Ind. Eng. Chem. Res., 52(51): 18276-18286.
    CrossRef    
  6. Chen, Y.C., R. Lai, D.L. Ingram, T. Block, M. Wojtowicz, P.H. Liu, H.C. Yen, A. Oki, D.C. Streit and K. Yano, 2000. Highly efficient high power InP HEMT amplifiers for high frequency applications. Proceeding of the 58th IEEE DRC Devices Research Conference, pp: 139-140.
    CrossRef    
  7. Hayati, M. and B. Akhlaghi, 2013. An extraction technique for small signal intrinsic parameters of HEMTs based on artificial neural networks. AEU Int. J. Electron. Commun., 67(2): 123-129.
    CrossRef    
  8. Hayati, M., A. Shamkhani, A. Rezaei and M. Seifi, 2008. HEMT Transistor Noise modeling using generalized radial basis function. Proceeding of the IEEE International Conference on Semiconductor Electronics, pp: 509-513.
    CrossRef    
  9. Hayati, M., M. Seifi and A. Rezaei, 2010. Double gate MOSFET modeling based on adaptive neuro-fuzzy inference system for nanoscale circuit simulation. ETRI J., 32(4): 530-539.
    CrossRef    
  10. Lai, R., X.B. Mei, W.R. Deal, W. Yoshida, Y.M. Kim, P.H. Liu, J. Lee, J. Uyeda, V. Radisic, M. Lange, T. Gaier, L. Samoska and A. Fung, 2007. Sub 50 nm InP HEMT device with fmax greater than 1 THz. Proceeding of the IEEE International Electron Devices Meeting, pp: 609-611.
    CrossRef    
  11. Lin, J.C., P.Y. Yang and W.C. Tsai, 2007. Simulation and analysis of metamorphic high electron mobility transistors. Microelectron. J., 38(2): 251-254.
    CrossRef    
  12. Liu, Y. and Z. Gao, 2015. Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian Process Regression models. J. Appl. Polym. Sci., 132(6): 1905-1913.
    CrossRef    
  13. Murphy, E.K. and V.V. Yakovlev, 2006. RBF network optimization of complex microwave systems represented by small FDTD modeling data sets. IEEE T. Microw. Theory, 54(7): 3069-3083.
    CrossRef    
  14. Ni, W., L. Nørgaard and M. Mørup, 2014. Non-linear calibration models for near infrared spectroscopy. Anal. Chim. Acta, 813: 1-14.
    CrossRef    PMid:24528654    
  15. Rasmussen, C.E. and C.K.I. Williams, 2006. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass, 17: 48.
    Direct Link
  16. Sun, A.Y., D. Wang and X. Xu, 2014. Monthly streamflow forecasting using Gaussian process regression. J. Hydrol., 511: 72-81.
    CrossRef    
  17. Wang, C., Y. Zhang, M. Guan, L. Cui, K. Ding, B. Zhang, Z. Lin, F. Huang and Y. Zeng, 2015. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors. J. Cryst. Growth, 425: 381-384.
    CrossRef    
  18. Wang, K., T. Chen and R. Lau, 2011. Bagging for robust non-linear multivariate calibration of spectroscopy. Chemometr. Intell. Lab., 105(1): 1-6.
    CrossRef    
  19. Yuan, J., K.S. Wang, T. Yu and M.L. Fang, 2008. Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int. J. Mach. Tool. Manu., 48(1): 47-60.
    CrossRef    
  20. Zhao, Z., Y. Qu, Y. Zhang and X. Shen, 2013. Overview of microwave device modeling techniques based on machine learning. Int. J. Adv. Comput. Technol., 5(9): 299-306.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved