Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Curve Variations in Non-Stationary Three-Point Subdivision Schemes

1Kashif Rehan and 2Waqas Ali Tanveer
1Department of Mathematics, University of Engineering and Technology, KSK Campus
2Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
Research Journal of Applied Sciences, Engineering and Technology  2018  6:212-218
http://dx.doi.org/10.19026/rjaset.15.5860  |  © The Author(s) 2018
Received: December 1, 2017  |  Accepted: January 25, 2018  |  Published: June 15, 2018

Abstract

Subdivision schemes are acknowledged as an important tool in computer aided geometric design. The new binary non-stationary three-point approximating subdivision schemes have been proposed that generate wide variations of $C^1$ and $C^2$ continuous curves using shape control parameter $ξ^0$. The proposed schemes are the counterpart of stationary schemes introduced by Hormann and Sabin (2008) and Siddiqi and Ahmad (2007). Curve variations using the shape control parameter $ξ^0$ have been demonstrated by the several examples.

Keywords:

Approximating, binary, non-stationary, smooth curves, subdivision,


References

  1. Hassan, M.F. and N.A. Dodgson, 2003. Ternary and Three Point Univariate Subdivision Schemes. In: Cohen, A., J.L. Merrien and L.L. Schumaker (Eds.), Curve and Surface Fitting: Sant-Malo 2002. Nashboro Press, Brentwood, pp: 199-208.
  2. Siddiqi, S.S. and K. Rehan, 2010. A ternary three-point scheme for curve designing. Int. J. Comput. Math., 87(8): 1709-1715.
    CrossRef    
  3. Beccari, C., G. Casciola and L. Romani, 2007a. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. Comput. Aided Geom. D., 24(1): 1-9.
    CrossRef    
  4. Beccari, C., G. Casciola and L. Romani, 2007b. An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control. Comput. Aided Geom. D., 24(4): 210-219.
    CrossRef    
  5. Dyn, N. and D. Levin, 1995.Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl., 193(2): 594-621.
    CrossRef    
  6. Dyn, N., D. Levin and J.A. Gregory, 1987. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. D., 4(4): 257-268.
    CrossRef    
  7. Hormann, K. and M.A. Sabin, 2008. A family of subdivision schemes with cubic precision. Comput. Aided Geom. D., 25(1): 41-52.
    CrossRef    
  8. Pan, J., S. Lin and X. Luo, 2012. A combined approximating and interpolating subdivision scheme with C2 continuity. Appl. Math. Lett., 25(12): 2140-2146.
    CrossRef    
  9. Siddiqi, S.S. and N. Ahmad, 2007. A new three-point approximating C2 subdivision scheme. Appl. Math. Lett., 20(6): 707-711.
    CrossRef    
  10. Siddiqi, S.S., W. us Salam and K. Rehan, 2015. Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function. Appl. Math. Comput., 258: 120-129.
    CrossRef    
  11. Tan, J., J. Sun and G. Tong, 2016. A non-stationary binary three-point approximating subdivision scheme. Appl. Math. Comput., 276: 37-43.
    CrossRef    
  12. Tan, J.Q., X.L. Zhuang and L. Zhang, 2014a. A new four-point shape-preserving C3 subdivision scheme. Comput. Aided Geom. D., 31(1): 57-62.
    CrossRef    
  13. Tan, J.Q., Y.G. Yao, H.J. Cao and L. Zhang, 2014b. Convexity preservation of five-point binary subdivision scheme with a parameter. Appl. Math. Comput., 245: 279-288.
    CrossRef    

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2025. MAXWELL Scientific Publication Corp., All rights reserved