Research Article | OPEN ACCESS
Modified Particle Swarm Optimization for Solution of Reactive Power Dispatch
1Ali Nasser Hussain, 2Ali Abdulabbas Abdullah and 1Omar Muhammed Neda
1Department of Electrical Power Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq
2AL-Najaf Engineering Technical College, AL-Furat AL-Awsat Technical University, AL-Najaf, Iraq
Research Journal of Applied Sciences, Engineering and Technology 2018 8:316-327
Received: March 22, 2018 | Accepted: April 23, 2018 | Published: August 15, 2018
Abstract
Reactive Power Dispatch (RPD) is a complex, non-continuous and it is famous and essential problem in the power system. The calculation of this problem is really part of optimal load flow calculations. In this study, two types of Particle Swarm Optimization (PSO) algorithm are utilize as an optimization tools to solve RPD problem in order to minimize real Power Loss (PLoss) in the power system and keep voltage at all buses within acceptable limit. First type of PSO algorithm is Conventional PSO and the second type is utilize to improve the searching quality, also to decrease the time calculation and to enhance the convergence characteristic in the first type, it is called Modified PSO (MPSO). These types of PSO algorithm are tested on IEEE Node- 14, Node-30, Node-57 and Node-118 power systems to test their efficiency and ability in solving RPD problem in small and large power systems. The simulation results in four power systems show that the MPSO algorithm has a better performance in decreasing losses, decreasing time calculation and enhancement of voltage profile when compared to the Conventional PSO and other algorithms that reported in the literature.
Keywords:
Conventional PSO, modified PSO, optimal load flow calculations, power loss, reactive power dispatch, voltage profile,
References
-
Jeyadevi, S., S. Baskar, C.K. Babulal and M. Willjuice Iruthayarajan, 2011. Solving multi objective optimal reactive power dispatch using modified NSGA-II. Int. J. Elec. Power, 33(2): 219-228.https://doi.org/10.1016/j.ijepes.2010.08.017
CrossRef -
Kennedy, J. and R. Eberhart, 1995. Particle swarm optimization. Proceeding of the IEEE International Conference on Neural Networks. Perth, Australia, Piscataway NJ, 4: 1942-1948.https://doi.org/10.1109/ICNN.1995.488968
CrossRef -
Lee, K.Y., Y.M. Park and J.L. Ortiz, 1985. A united approach to optimal real and reactive power dispatch. IEEE T. Power Ap. Syst., 104(5): 1147-1153.https://doi.org/10.1109/TPAS.1985.323466
CrossRef -
Yoshida, H., K. Kawata, Y. Fukuyama, S. Takayama and Y. Nakanishi, 2000. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE T. Power Syst., 15(4): 1232-1239.
CrossRef -
Abido, M.A., 2006. Multiobjective optimal VAR dispatch using strength Pareto evolutionary algorithm. Proceeding of the 2006 IEEE Congress on Evolutionary Computation (CEC), pp: 730-736.
CrossRef -
Abou El Ela, A.A., M.A. Abido and S.R. Spea, 2011. Differential evolution algorithm for optimal reactive power dispatch. Electr. Power Syst. Res., 81(2): 458-464.
CrossRef -
Aoki, K., A. Nishikori and R.T. Yokoyama, 1987. Constrained load flow using recursive quadratic programming. IEEE T. Power Syst., 2(1): 8-16.
CrossRef -
Badar, A.Q.H., B.S. Umre and A.S. Junghare, 2012. Reactive power control using dynamic particle swarm optimization for real power loss minimization. Int. J. Elec. Power, 41: 133-136.
CrossRef -
Bakare, G.A., G.K. Venayagamoorthy and U.O. Aliyu, 2005. Reactive power and voltage control of the Nigerian grid system using micro-genetic algorithm. Proceeding of IEEE Power and Engineering Society General Meeting, pp: 1916-1922.
CrossRef -
Bhagwan Das, D. and C. Patvardhan, 2003. A new hybrid evolutionary strategy for reactive power dispatch. Electr. Power Syst. Res., 65(2): 83-90.
CrossRef -
Bhattacharya, A. and P.K. Chattopadhyay, 2010. Solution of optimal reactive power flow using biogeography-based optimization. Int. J. Electr. Electron. Eng., 4(3): 621-629.
-
Carpentier, J., 1962. Contribution to the economic dispatch problem. Bull. Soc. Fr. Electr., 3(8): 431-447.
-
Dai, C., W. Chen, Y. Zhu and X. Zhang, 2009. Seeker optimization algorithm for optimal reactive power dispatch. IEEE T. Power Syst., 24(3): 1218-1231.
CrossRef -
Deeb, N. and S.M. Shaidepour, 1990. Linear reactive power optimization in a large power network using the decomposition approach. IEEE T. Power Syst., 5(2): 428-435.
CrossRef -
Devaraj, D., 2007. Improved genetic algorithm for multi-objective reactive power dispatch problem. Eur. T. Electr. Power., 17(6): 569-581.
CrossRef -
Duman, S., Y. Sonmez, U. Guvenc and N. Yorukeren, 2012. Optimal reactive power dispatch using a gravitational search algorithm. IET Gener. Transm. Dis., 6(6): 563-576.
CrossRef -
Durairaj, S., D. Devaraj and P.S. Kannan, 2006. Genetic algorithm applications to optimal reactive power dispatch with voltage stability enhancement. J. Inst. Eng. (India): Electr. Eng. Div., 87: 42-47.
Direct Link -
Eberhart, R.C. and Y. Shi, 2000. Comparing inertia weights and constriction factors in particle swarm optimization. Proceeding of the 2000 Congress on Evolutionary Computation, (CEC00). La Jolla, CA, USA, July 16-19, pp: 84-88.
Direct Link -
Ghasemi, M., S. Ghavidel, M.M. Ghanbarian and A. Habibi, 2014. A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables. Appl. Soft Comput., 22: 126-140.
CrossRef -
Granville, S., 1994. Optimal reactive dispatch through interior point methods. IEEE T. Power Syst., 9(1): 136-146.
CrossRef -
Habiabollahzadeh, H., G.X. Luo and A. Semlyen, 1989. Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology. IEEE T. Power Syst., 4(2): 530-537.
CrossRef -
Iba, K., 1994. Reactive power optimization by genetic algorithm. IEEE T. Power Syst., 9(2): 685-692.
CrossRef -
Khazali, A.H. and M. Kalantar, 2011. Optimal reactive power dispatch based on harmony search algorithm. Int. J. Elec. Power, 33(3): 684-692.
CrossRef -
Kirschen, D.S. and H.P. Van Meeteren, 1988. MW/voltage control in a linear programming based optimal power flow. IEEE T. Power Syst., 3(2): 481-489.
CrossRef -
Liang, C.H., C.Y. Chung, K.P. Wong and X.Z. Duan, 2006. Comparison and improvement of evolutionary programming techniques for power system optimal reactive power flow. IEE P-Gener. Transm. D., 153(2): 228-236.
CrossRef -
Liang, C.H., C.Y. Chung, K.P. Wong, X.Z. Duzn and C.T. Tse, 2007. Study of differential evolution for optimal reactive power flow. IET Gener. Transm. Dis., 1(2): 253-260.
CrossRef -
Liu, W.H.E., A.D. Papalexopoulos and W.F. Tinney, 1992. Discrete shunt controls in a Newton optimal power flow. IEEE T. Power Syst., 7(4): 1509-1518.
CrossRef -
Mahadevan, K. and P.S. Kannan, 2010. Comprehensive learning particle swarm optimization for reactive power dispatch. Appl. Soft Comput., 10(2): 641-652.
CrossRef -
Mehdinejad, M., B. Mohammadi-Ivatloo, R. Dadashzadeh-Bonab and K. Zare, 2016. Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. Int. J. Elec. Power, 83: 104-116.
CrossRef -
Momoh, J.A. and J.Z. Zhu, 1999. Improved interior point method for OPF problems. IEEE T. Power Syst., 14(3): 1114-1120.
CrossRef -
Nanda, J., D.P. Kothari and S.C. Srivastava, 1989. New optimal power-dispatch algorithm using Fletcher's quadratic programming method. IEE Proc-C, 136(3): 153-161.
CrossRef -
Niknam, T., H.D. Mojarrad and H.Z. Meymand, 2011. A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects. Energ. Convers. Manage., 52(4): 1800-1809.
CrossRef -
Pandya, S. and R. Roy, 2015. Particle swarm optimization based optimal reactive power dispatch. Proceeding of the IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp: 1-5.
CrossRef -
Quintana, V.H. and M. Santos-Nieto, 1989. Reactive-power dispatch by successive quadratic programming. IEEE T Energ. Convers., 4(3): 425-435.
Direct Link -
Rajan, A. and T. Malakar, 2015. Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm. Int. J. Elec. Power, 66: 9-24.
CrossRef -
Ramirez, J.M., J.M. Gonzalez and T.O. Ruben, 2011. An investigation about the impact of the optimal reactive power dispatch solved by DE. Int. J. Elec. Power, 33(2): 236-244.
CrossRef -
Subbaraj, P. and P.N. Rajnarayan, 2009. Optimal reactive power dispatch using self-adaptive real coded Genetic algorithm. Electr. Power Syst. Res., 79(2): 374-381.
CrossRef -
Tehzeeb-Ul-Hassan, H., R. Zafar, S.A. Mohsin and O. Lateef, 2012. Reduction in power transmission loss using fully informed particle swarm optimization. Int. J. Elec. Power, 43(1): 364-368.
CrossRef -
Varadarajan, M. and K.S. Swarup, 2008. Differential evolution approach for optimal reactive power dispatch. Appl. Soft Comput., 8(4): 1549-1561.
CrossRef -
Vlachogiannis, J.G. and K.Y. Lee, 2006. A comparative study on particle swarm optimization for optimal steady-state performance of power systems. IEEE T. Power Syst., 21(4): 1718-1728.
CrossRef -
Wu, Q.H. and J.T. Ma, 1995. Power system optimal reactive power dispatch using evolutionary programming. IEEE T. Power Syst., 10(3): 1243-1249.
CrossRef -
Wu, Q.H., Y.J. Cao and J.Y. Wen, 1998. Optimal reactive power dispatch using an adaptive genetic algorithm. Int. J. Elec. Power, 20(8): 563-569.
CrossRef -
Yan, W., F. Liu, C.Y. Chung and K.P. Wong, 2006. A hybrid genetic algorithm-interior point method for optimal reactive power flow. IEEE Trans. Power Syst., 21(3): 1163-1209.
CrossRef -
Yan, X. and V.H. Quintana, 1999. Improving an interior-point-based OPF by dynamic adjustments of step sizes and tolerances. IEEE T. Power Syst., 14(2): 709-717.
CrossRef -
Yang, C.F., G.G. Lai, C.H. Lee, C.T. Su and G.W. Chang, 2012. Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement. Int. J. Elec. Power, 37: 50-57.
CrossRef
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|