Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Near-threshold Computing of Single-rail MOS Current Mode Logic Circuits

Ruiping Cao and Jianping Hu
Faculty of Information Science and Technology, Ningbo University, Ningbo 315211, China
Research Journal of Applied Sciences, Engineering and Technology  2013  10:2991-2996
http://dx.doi.org/10.19026/rjaset.5.4612  |  © The Author(s) 2013
Received: September 16, 2012  |  Accepted: November 01, 2012  |  Published: March 25, 2013

Abstract

Scaling supply voltage is an efficient technique to achieve low power-delay product. This study presents low-power Single-Rail MOS Current Mode Logic (SRMCML) circuits which operate on near-threshold region. The near-threshold operations for the basic SRMCML circuits such as inverter/buffer, OR2/NOR2 and 2/NAND2, OR3/NOR3 and XOR3/NXOR3 are investigated. All circuits are simulated with HSPICE at the SMIC 130 nm CMOS process by varying supply voltage from 0.6V to 1.3V with 0.1V steps. Based on the simulation results, lowering supply voltage is advantageous. The power dissipations of the proposed near-threshold SRMCML basic gates are almost the same as the conventional Dual-Rail MCML (DRMCML) circuits and the delay of the SRMCML is less than the DRMCML because of its single-rail scheme.

Keywords:

High-speed applications, low power, MOS current mode logic, near-threshold computing, single-rail structure,


References


Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved