Home            Contact us            FAQs
    
      Journal Home      |      Aim & Scope     |     Author(s) Information      |      Editorial Board      |      MSP Download Statistics

     Research Journal of Applied Sciences, Engineering and Technology


Fuzzy Sliding Mode Control Design and Particle Swarm Optimization Based PSS for Multimachine Power System

Khaddouj Ben Meziane, Faiza Dib and Boumhidi Ismail
Department of Physics, Faculty of Sciences, LESSI Laboratory, University of Sidi Mohammed Ben Abdellah, Dhar Mehraz, Fez, Morocco
Research Journal of Applied Sciences, Engineering and Technology  2014  2:188-196
http://dx.doi.org/10.19026/rjaset.8.958  |  © The Author(s) 2014
Received: March ‎13, ‎2014  |  Accepted: April ‎11, ‎2014  |  Published: July 10, 2014

Abstract

The aim of this study is to design nonlinear robust controllers for multimachine power systems. A technique for the optimal tuning of Power System Stabilizer (PSS) by integrating the Particle Swarm Optimization (PSO) combined with the Fuzzy Sliding Mode Control (FSMC) is proposed in this study. The fuzzy tuning schemes are employed to improve control performance and to reduce chattering in the sliding mode. The objective of this method is to enhance the stability and the dynamic response of the multimachine power system operating in different operating conditions. In order to test the effectiveness of the proposed method, the simulation results show the damping of the oscillations of the angle and angular speed with reduced overshoots and quick settling time.

Keywords:

Fuzzy logic, multimachine power system, particle swarm optimization algorithm, power system stabilizer, sliding mode control, stability,


References

  1. Abera, A.G.E. and B. Bandyopadhyay, 2008. Digital redesign of sliding mode control with application to power system stabilizer. Proceeding of 34th Annual Conference of IEEE Industrial Electronics (IECON, 2008), pp: 164-169.
    CrossRef    
  2. Abido, M.A., 2010. Robust Design of Power System Stabilizers for Multimachine Power Systems using Differential Evolution. In: Panigrahi, B.K. et al. (Eds.), Computational Intelligence in Power Engineering. Springer-Verlag, Berlin, Heidelberg, 302: 1-18.
    CrossRef    
  3. Al-Duwaish, H.N. and M.Z. Al-Hamouz, 2011. A neural network based adaptive sliding mode controller: Application to a power system stabilizer. Energ. Convers. Manage., 52: 1533-1538.
    CrossRef    
  4. Amer, A.F., E.A. Sallam and W.M. Elawady, 2011. Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl. Soft Comput., 11: 4943-4953.
    CrossRef    
  5. Amin, K. and R. Hemmati, 2012. Robust decentralized multi-machine power system stabilizer design using quantitative feedback theory. Electr. Pow. Energ. Syst., 41: 112-119.
    CrossRef    
  6. Ben-Meziane, K., F. Dib and I. Boumhidi, 2013. Fuzzy sliding mode controller for power sysytem SMIB. J. Theor. Appl. Inform. Technol., 54: 331-338.
  7. Colbia-Vegaa, A., J. de Leon-Morales, L. Fridman, O. Salas-Pena and M.T. Mata-Jimenez, 2008. Robust excitation control design using sliding-mode technique for multimachine power systems. Electr. Pow. Syst. Res., 78: 1627-1634.
    CrossRef    
  8. Gaing, Z.L., 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE T. Energy Conver., 19: 384-391.
    CrossRef    
  9. GirirajKumar, S.M., D. Jayaraj and A.R. Kishan, 2010. PSO based tuning of a PID controller for a high performance drilling machine. Int. J. Comput. Appl., 1: 12-18.
  10. Ha, Q.P., Q.H. Nguyen, D.C. Rye and H.F. Durrant-Whyte, 2001. Fuzzy sliding-mode controllers with applications. IEEE T. Ind. Electron., 48: 38-46.
    CrossRef    
  11. Hasan, N., Ibraheem and S. Farooq, 2012. Real time simulation of automatic generation control for interconnected power system. Int. J. Electr. Eng. Inform., 4: 40-51.
    CrossRef    
  12. Liang, R.H., S.R. Tsai, Y.T. Chen and W.T. Tseng, 2011. Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr. Pow. Syst. Res., 81: 1466-1474.
    CrossRef    
  13. Manisha, D., A. Dubey and A. Shrivastava, 2013. PSO based power system stabilizer to improve power system stability. Proceeding of 2nd International Conference on Mechanical, Electronics and Mechatronics Engineering (ICMEME' 2013), pp: 100-103.
    PMCid:PMC3645824    
  14. Mendiratta, J.K. and R. Jayapal, 2010. H8 loop shaping based robust power system stabilizer for three machine power system. Int. J. Comput. Appl., 1: 106-112.
  15. Ouassaid, M., M. Maaroufi and M. Cherkaoui, 2011. Observer-based nonlinear control of power system using sliding mode control strategy. Electr. Pow. Syst. Res., 84: 135-143.
    CrossRef    
  16. Rajendraprasad, N. and P.C. Panda, 2013. Coordinated design of PSS with multiple FACTS controllersusing advanced adaptive PSO. Int. J. Electr. Eng. Inform., 5: 361-376.
    CrossRef    
  17. Sanjeev, K. and D.K. Chaturvedi, 2013. Optimal power flow solution using fuzzy evolutionary and swarm optimization. Electr. Pow. Energ. Syst., 47: 416-423.
    CrossRef    
  18. Shayeghi, H., H.A. Safari and H.A. Shayanfar, 2008. Multimachine power system stabilizers design using PSO algorithm. World Acad. Sci. Eng. Technol., 17: 721-728.
  19. Sidhartha, P. and C. Ardil, 2008. Robust coordinated design of multiple power system stabilizers using particle swarm optimization technique. Int. J. Electr. Syst. Sci. Eng., 1: 41-48.

Competing interests

The authors have no competing interests.

Open Access Policy

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Copyright

The authors have no competing interests.

ISSN (Online):  2040-7467
ISSN (Print):   2040-7459
Submit Manuscript
   Information
   Sales & Services
Home   |  Contact us   |  About us   |  Privacy Policy
Copyright © 2024. MAXWELL Scientific Publication Corp., All rights reserved