Research Article | OPEN ACCESS
Convexity-preserving using Rational Cubic Spline Interpolation
1Samsul Ariffin Abdul Karim and 2Kong Voon Pang
1Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan, Malaysia
2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang, Malaysia
Research Journal of Applied Sciences, Engineering and Technology 2014 3:312-320
Received: October 25, 2013 | Accepted: December 04, 2013 | Published: July 15, 2014
Abstract
This study is a continuation of our previous paper. The rational cubic spline with three parameters has been used to preserves the convexity of the data. The sufficient condition for rational interpolant to be convex on entire subinterval will be developed. The constraint will be on one of the parameter with data dependent meanwhile the other are free parameters and will determine the final shape of the convex curves. Several numerical results will be presented to test the capability of the proposed rational interpolant scheme. Comparisons with the existing scheme also have been done. From all numerical results, the new rational cubic spline interpolant gives satisfactory results.
Keywords:
Convexity-preserving , parameters , rational cubic spline , sufficient condition,
References
-
Abbas, M., A.A. Majid, M.N.Hj. Awang and J.M. Ali, 2012. Local convexity shape-preserving data visualization by spline function. ISRN Math. Anal., 2012: 14, Article ID 174048.
-
Brodlie, K.W. and S. Butt, 1991. Preserving convexity using piecewise cubic interpolation. Comput. Graph., 15: 15-23.
CrossRef
-
Delbourgo, R., 1989. Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator. IMA J. Numer. Anal., 9: 123-136.
CrossRef
-
Delbourgo, R. and J.A. Gregory, 1985a. Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comp., 6: 967-976.
CrossRef
-
Delbourgo, R. and J.A. Gregory, 1985b. The determination of derivative parameters for a monotonic rational quadratic interpolant. IMA J. Numer. Anal., 5: 397-406.
CrossRef
-
Dodd, M.S.L. and J.A. Roulier, 1983. Shape preserving spline interpolation for specifying bivariate functions of grids. IEEE Comput. Graph., 3(6): 70-79.
CrossRef
-
Dougherty, R.L., A. Edelman and J.M. Hyman, 1989. Nonnegativity-monotonicity-, or convexity-preserving cubic and quintic hermite interpolation. Math. Comput., 52(186): 471-494.
CrossRef
-
Dube, M. and P. Tiwari, 2012. Convexity preserving C2 rational quadratic trigonometric spline. AIP Conference Proceeding of ICNAAM, 1479: 995-998.
CrossRef
-
Dube, M. and P. Tiwari, 2013. Convexity preserving C2 rational quadratic trigonometric spline. Int. J. Sci. Res. Publ., 3(3): 1-9.
-
Fritch, F.N. and R.E. Carlson, 1980. Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17: 238-246.
CrossRef
-
Gregory, J.A., 1986. Shape preserving interpolation. Comput. Aided Design, 18(1): 53-57.
CrossRef
-
Greiner, H., 1991. A survey on univariate data interpolation and approximation by splines of given shape. Math. Comput. Model., 15(10): 97-106.
CrossRef
-
Hussain, M.Z. and M. Hussain, 2007. Visualization of 3D data preserving convexity. J. Appl. Math. Comput., 23(2): 397-410.
CrossRef
-
Hussain, M.Z. and M. Hussain, 2008. Convexity preserving piecewise rational bi-cubic interpolation. Comput. Graph. CAD/CAM, 02: 014-024.
-
Hussain, M.Z., M. Hussain, M. and T.S. Shaikh, 2008. Shape preserving convex surface data visualization using rational bi-quartic function. Eur. J. Sci. Res., 21(2): 319-327.
-
Hussain, M.Z., M. Sarfraz and M. Hussain, 2010. Scientific data visualization with shape preserving C1 rational cubic interpolation. Eur. J. Pure Appl. Math., 3(2): 194-212.
-
Hussain, M.Z., M. Sarfraz and T.S. Shaikh, 2011. Shape preserving rational cubic spline for positive and convex data. Egypt. Inform. J., 12: 231-236.
CrossRef
-
Karim, S.A.A. and A.R.M. Piah, 2009. Rational generalized ball functions for convex interpolating curves. J. Qual. Meas. Anal., 5(1): 65-74.
-
Karim, S.A.A. and V.P. Kong, 2013. Shape preserving interpolation using rational cubic spline. Preprint.
-
Lam, M.H., 1990. Monotone and convex quadratic spline interpolation. VA. J. Sci., 41(1): 1-13.
-
Pan, Y.J. and G.J. Wang, 2007. Convexity-preserving interpolation of trigonometric polynomial curves with a shape parameter. J. Zheijang Univ., Sci. A, 8(8): 1199-1209.
-
Roulier, J.A., 1987. A convexity preserving grid refinement algorithm for interpolation of bivariate functions. IEEE Comput. Graph., 7(1): 57-62.
CrossRef
-
Sarfraz, M., 2002. Visualization of positive and convex data by a rational cubic spline interpolation. Inform. Sci., 146(1-4): 239-254.
CrossRef
-
Sarfraz, M., M.A. Mulhem and F. Ashraf, 1997. Preserving monotonic shape of the data using piecewise rational cubic functions. Comput. Graph., 21(1): 5-14.
CrossRef
-
Sarfraz, M., S. Butt and M.Z. Hussain, 2001. Visualization of shaped data by a rational cubic spline interpolation. Comput. Graph., 25: 833-845.
CrossRef
-
Sarfraz, M., M.Z. Hussain and M. Hussain, 2013. Modeling rational spline for visualization of shaped data. J. Numer. Math., 21(1): 63-87.
CrossRef
-
Schumaker, L.L., 1983. On shape preserving quadratic spline interpolant. SIAM J. Numer. Anal., 20: 854-864.
CrossRef
-
Tian, M., 2010. Shape preserving rational cubic interpolation spline. Proceeding of 2nd International Conferences on Information Science and Engineering (ICISE, 2010), pp: 1-4.
-
Tian, M., Y. Zhang, J. Zhu and Q. Duan, 2005. Convexity-preserving piecewise rational cubic interpolation. J. Inform. Comput. Sci., 2(4): 799-803.
-
Zhang, Y., Q. Duan and E.H. Twizell, 2007. Convexity control of a bivariate rational interpolating spline surfaces. Comput. Graph., 31(5): 679-687.
CrossRef
-
Zhu, Y., X. Han and J. Han, 2012. Quartic trigonometric BeĢzier curves and shape preserving interpolation curves. J. Comput. Inform. Syst., 8(2): 905-914.
Competing interests
The authors have no competing interests.
Open Access Policy
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Copyright
The authors have no competing interests.
|
|
|
ISSN (Online): 2040-7467
ISSN (Print): 2040-7459 |
|
Information |
|
|
|
Sales & Services |
|
|
|